This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp # RADIAN CORPORATION DCN 78-200-250-07 TASK 2 REPORT: DOCUMENTATION OF WORK DONE IN SUPPORT OF THE REGIONAL COPPER/NICKEL STUDY by: Richard T. Coleman Jr. Radian Corporation 8500 Shoal Creek Blvd. Austin, Texas 78766 prepared for: Dr. Peter J. Kreisman Regional E.I.S. Research Manager Environmental Quality Council Hennepin Square Bldg., Suite 109 2021 East Hennepin Avenue Minneapolis, Minnesota 55413 29 August 1978 ### CONTENTS | 1. | Introduction | 1 | |-----|---|-----| | 2. | Smelter Sulfur Balance | 2 | | 3. | Limestone Scrubber Cost Estimate | 12 | | 4. | Limestone Scrubber Water Consumption Estimate | 24 | | 5. | Electrostatic Precipitator Capital Cost Estimates | 25 | | | $\mathrm{NO}_{ imes}$ Emissions Evaluation | | | 7. | Estimate of Particulate Emissions | 30 | | D (| erences | 2.0 | | кег | erences | 33 | | Арр | endix | 35 | ### FIGURES | Number | | Page | |--------|--|------| | 1 | Flowscheme for a copper/nickel smelter using a flash smelting furnace | 4 | | 2 | Flowscheme for a copper/nickel smelter using a roaster/electric furnace combination | 9 | | 3 | Process flow diagram - limestone scrubbing process for steel mill sinter plant application | 13 | | 4 | Particulate emissions from flash and electric smelting schemes | 32 | ### TABLES. | Number | | Page | |--------|---|------| | 1 | Total Sulfur Balance Flash Smelting Furnace | 5 | | 2 | Total Sulfur Balance - Electric Smelting Furnace Case | 10 | | 3 | Estimated Total Capital Investment Summary for Flue Gas Desulfurization Using Limestone Slurry Scrubbing - Case: Electric Furnace | 14 | | 4 | Estimated Limestone Slurry Process Total Annual Operating
Costs - Case 1: Electric Furnace, 90% Scrubber Efficiency | 15 | | 5 | Estimated Limestone Slurry Process Total Annual Operating Costs - Case 2: Electric Furnace, NSPS | 16 | | 6 | Estimated Total Capital Investment Summary for Flue Gas Desulfurization Using Limestone Slurry Scrubbing - Case: Flash Furnace | . 17 | | 7 | Limestone Slurry Process Total Annual Operating Costs - Case 3: Flash Furnace, 90% Scrubber Efficiency | 18 | | 8 | Limestone Slurry Process Total Annual Operating Costs - Case 4: Flash Furnace, NSPS | 19 | | 9 | Estimated Total Capital Investment Summary for Flue Gas Desulfurization Using Limestone Slurry Scrubbing - Case 5: Electric Furnace | 20 | | 10 | Estimated Limestone Slurry Process Total Annual Operating Costs - Case 5: Electric Furnace, NSPS, no acid plant tail gas | 21 | | 11 | Estimated Total Capital Investment Summary for Flue Gas Desulfurization Using Limestone Slurry Scrubbing - Case 6: Flash Furnace | 22 | | 12 | Estimated Limestone Slurry Process Total Annual Operating Costs - Case 6: Flash Furnace, NSPS, no acid plant tail gas | 23 | ### TABLES (Continued) | Number | | Page | |--------|---|------| | 14 | Estimated Capital Cost Installed for Removing Particulates from Various Smelter Gas Streams | 26 | | 15 | Concentration Ranges of NO_{\times} From Coal-Fired Power Plants | 29 | | A-1 | Case 1, Electric Furnace, 90% Scrubber Efficiency Work Sheets for Process Equipment Costs | 36 | | A-2 | Case 2, Electric Furnace, NSPS* Work Sheet for Process Equipment Costs | 42 | | A-3 | Case 3, Flash Furnace, 90% Scrubber Efficiency Work Sheet for Process Equipment Costs | 48 | | A-4 | Case 4, Flash Furnace, NSPS* Work Sheet for Process Equipment Costs | 54 | | A-5 | Case 5, Electric Furnace, NSPS* Work Sheet for Process Equipment Costs | 60 | | A-6 | Case 6, Flash Furnace, NSPS* Work Sheet for Process Equipment Costs | 66 | ## SECTION 1 INTRODUCTION This report describes the engineering work performed to support a part of the Regional Copper-Nickel Study being conducted by the Environmental Quality Council of the State of Minnesota. The work described and results presented represent work on Task 2, "Smelter Model Development." The smelter model is a series of estimates which allow the emissions from a future copper/nickel smelter to be predicted. The particular type of smelter is one which would process ore from the Duluth Gabbro ore body. Six subtasks were completed under Task 2. There are: - Smelter sulfur balance, - Limestone scrubber cost estimate, - Limestone scrubber water use estimate, - Electrostatic precipitator cost estimate, - NO_v emissions evaluation, and - Estimate of particulate emissions. In the following sections, the purpose of each of these subtasks is described, the assumptions made are given, and the results are presented with the appropriate references. These sections are intended as documentation of the work performed. They do not contain information from other tasks performed for the Regional Copper-Nickel Study and should not be used without the additional supporting information available to the study. ## SECTION 2 SMELTER SULFUR BALANCE The sulfur material balance estimates presented in this section were completed so that an atmospheric model could be developed of the expected SO₂ emissions from a copper/nickel smelter. Two smelter flowsheets were developed which are feasible for processing the copper/nickel concentrates which are expected to be produced from Duluth Gabbro ore. Figures 1 and 2 are the flowsheets used for the smelter model. Figure 1 employs a flash smelting furnace whereas Figure 2 uses a roaster/electric furnace combination. Both flowsheets represent technically feasible smelting approaches. Neither, however, are expected to be the exact smelter configuration ultimately used. The basis used for both material balances is as follows: - 635,245 metric tons per year of concentrate assaying 25.9% sulfur (164,341 metric tons S/year), - 92% copper recovery, - 0.005% sulfur in anode copper, and - 55% copper matte produced. The quantity and concentration of sulfur in process streams other than the concentrate and anode copper were based on available literature data, data provided by smelting companies, and estimates made by the author. Tables 1 and 2 present the two smelter sulfur balances and the attached notes list the assumptions made and appropriate references. It should be emphasized that Tables 1 and 2 are the best estimates possible using available smelter data. The estimates of fugitive emissions were made based on observations in five primary copper, one primary copper/nickel, and thirteen other nonferrous smelters. They are, however, estimates. No accurate measurements of fugitive emissions in copper or nickel smelters have been reported in the literature. Figure 1. Flowscheme for a copper/nickel smelter using a flash smelting furnace. | | | | | | | | | | 1 mm and 2 | | | and the second of | | | | | | |---|-----------------------------|-----------------|--|--------------------------------|----------------------------|---------------------------|--------------------------------|---------------------|------------|--------------------------|------|-------------------|----------------------------------|-------------------------------------|----------------------------------|--------------------------------|-----------------| | | \Diamond | 2 | 3> | 4 | \(\sqrt{5}\) | 6 | · « | √ √ | · | 8 | < | 9> | $\langle 10 \rangle$ | $\langle i \rangle$ | 12> | (13) | | | Stream Name | Concen-
trate | Drier
Offgas | Flash
Furnace
Vent Gas
(Slag/Matt
Taps) | Flash
e Furnace
Fugitive | | e Seconda | ter Con | verter
Itives
 | verter
fgas | Furi | nace #1 | Electric
Furnace
Offgas #1 | Electric
Furnace #2
Fugitives | Electric
Furnace
Offgas #: | Nickel
Convert
2 Fugitiv | er | | Percent of Sulfur In Concentrate | 100.0 | 0.63 | 0.90 | 0.10 | 62.4 | 0.90 | 0 | . 10 | 29 | .295 | (| 0.04 | 0.36 | 0.02 | 0.185 | 0.03 | | | Metrie Tons
Sulfur
per Year | 164,341 | 1,035 | 1,479 | 164 | 102,54 | 1,47 | 9 | 164 | 48 | ,144 | | 66 | 592 | 33 | 304 | 49 | · | | Gas Flow
(SCFM) | | 60,000 | 1,000 | 100 | 47,04 | 10,00 | 0 1, | 000 | 49 | ,184 | : | 200 | 2,000 | 200 | 2,000 | 100 | | | 3 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | L | Canada | la alemana de describir de la composição | 4 | | | | Control Intel | L | | L | | | | Lius razasa | (Continue | d) | | | (14) | (15) | (16) | (17) | 18 | (19) | 20> | 21 | > | 22 | | 23> | 24> | 25> | 26> | 27> | 28> | | Stream Name | Nickel
Convert
Offgas | | Discard
Slag | | Anode
Furnace
Offgas | Acid
Plant
Tail Gas | H ₂ SO ₄ | Wea
Aci
Blowd | d | Fugit
Emissi
(Tota | ons | Waste Ga | Scrubbe
as Slurry | | Sludge | Metallic
Dust | Anode
Copper | | Percent of Sulfur In Concentrate | 0.27 | 3.00 | 2.30 | 0.01 | 0.088 | | | | | 0.3 | 3 | | | | | 0.09 | 0.0025 | | Metric Tons
Sulfur
per Year | 444 | 4,930 | 3,780 | 16 | 145 | 542 | 146,841 | 3,31 | 10 | 492 | 2 | 498 | 4,481 | 779 | 7,012 | 148 | 4 | | Gas Flow
(SCFM) | 10,600 | | | 500 | 5,000 | 88,749 | | | | 2,100 |) | 170,34 | 9 | , | | 463.5 | | ## NOTES AND LIST OF ASSUMPTIONS FOR TABLE 1 ### Stream No. Basis for smelter model; 635,245 metric tons concentrate per year; 25.87% sulfur; 164,341 metric tons sulfur per year. - Assume spray drier uses streams 10 + 12 + 18 + 18 + 100 + - Ventilation gases from slag and matte taps; estimated average flow of these intermittent gas streams; assume 1.0% of incoming sulfur is released in slag or matte taps and 0.9% is captured in these gas streams. - Fugitive emissions from slag and matte taps; 0.1% of incoming sulfur; estimated. - Sources: HA-373, SH-347; 55% matte; 14% dilution in furnace and waste heat boiler, 12% dilution in electrostatic precipitator, 24% dilution prior to acid plant; 10.82% SO₂ in gas to acid plant. - Ventilation gases from secondary converter hoods; estimated average flow; assume 1.0% of incoming sulfur escapes primary converter hoods and 0.9% is captured in this gas stream. - Fugitive emissions escaping secondary converter hoods; 0.1% of incoming sulfur; estimated. - Source: SH-347; 55% matte; 75% hood dilution, 12% dilution in flues and gas cleaning equipment; 4.85% SO₂ in gas to acid plant. ## Stream No. Estimated; gas flow is assumed to be 10% of stream $\langle 10 \rangle$. Estimated using other electric furnace data (MO-274). Estimated; gas flow is assumed to be 10% of stream $\langle 12 \rangle$. Same as stream $\langle 10 \rangle$. Estimated; average gas flow assumed to be 10% of stream $\langle 14 \rangle$ Estimated from data on copper converter (SH-347). Estimated from data on copper converter (SH-347). Estimated from data on copper converter (SH-347). Estimated; gas flow is assumed to be 10% of stream $\langle 18 \rangle$ Estimated average of this intermittent gas stream from private conversation with smelting company. ~ 300 ppm SO_2 in acid plant tail gas; gas flow may vary with acid plant design. 97.44% sulfur recovery as acid. Total of streams 4 7 9 11 13 and 17. Will vary; assume 2000 ppm SO_4 ⁼, 2500 gpm. Stream No. (24) 25 10% of inlet to water treatment plant; 0.1 x ($\langle 21 \rangle + \langle 24 \rangle$). $\langle 26 \rangle$ $\langle 21 \rangle$ + $\langle 24 \rangle$ - $\langle 25 \rangle$. 27 Source: SH-347; 0.09% of 1. $\langle 28 \rangle$ Basis: 0.005% S in anode copper. Figure 2. Flowscheme for a copper/nickel smelter using a fluosolids roaster/electric furnace combination. 10 TABLE 2. TOTAL SULFUR BALANCE - ELECTRIC SMELTING FURNACE CASE | | | $\langle 2 \rangle$ | 3 | 4 | > < | 5 | 6 | | 8 | 9> | (10) | (1) | (1 | <u> </u> | (13) | |---|---|---------------------|--|-------------------------------|----------------------------|-----------------------|---------------------------------|-------------------------|---------------------|-------------------------------------|----------------------------------|------------------------------------|--------------|------------------|-------------------------------| | Stream Name | Concen-
trate | Roaster
Offgas | Electri
Furnace
Ventilat
Gas (Sla
Matte Ta | ion Electr
g/ Furna | ic Fur | etric
mace
cess | Secondary
Converter
Hoods | | Converter
Offgas | Electric
Furnace #1
Fugitives | Electric
Furnace #1
Offgas | Electric
Furnace f
Fugitives | 2 Furna | ice #2 Co | lickel
onverter
gitives | | Percent of
Sulfur in
Concen-
trate 1 | 100.0 | 50.0 | 0.9 | 0.1 | 1 | 2.8 | 0.9 | 0.1 | 28.9 | 0.04 | 0.36 | 0.02 | 0. | . 18 | 0.03 | | Metric Tons
Suffur
per Year | 164,341 | 82,170 | 1,479 | 164 | 21 | ,036 | 1,479 | 164 | 47,495 | 66 | 592 | 33 | 29 | 96 | 49 | | Gas Flow | | 25,155 | 1,000 | 100 | 12 | ,250 | 10,000 | 1,000 | 49,184 | 200 | 2,000 | 200 | 2,00 |)0 | 100 | | (SCFM) | | | 4.1 | | | | | 1 | L | <u> </u> | | |] | (Continu | | | (SCFM) | | | | | | | | | | | | | | (Continu | Γ | | (SCFM) | (14) | (15) | (16) | <u>(1)</u> | 18 | | 19 2 | 21> | 22 | 23 | 24 | 25> | 26 | (Continu | (28) | | (SCFM) | \(\frac{14}{\rm 16kel}\) Nickel Converte Offgas | | 016 Discard Slag | Anode
Furnace
Fugitives | Anode
Furnace
Offgas | Ac | id
nt | Weak
Acid | Total
Fugitiv | е | Scrubber | Clarifier
Overflow | 26
Sludge | r | 28)
Anode | | | Nickel
Converte | c Cu/Ní | Discard | Anode
Furnace
Fugitives | Anode
Furnace | Ac
Pla | id
nt | Weak
Acid | Total
Fugitiv | е | Scrubber | Clarifier | | , 27 | Anode
Copper | | Stream Name
Percent of
Salfar in
Concen- | Nickel
Converte
Offgas | c Cu/Ni
Matte | Discard
Slag | Anode
Furnace
Fugitives | Anode
Furnace | Ac
Pla | id
nt | Weak
Acid
Blowdov | Total
Fugitiv | е | Scrubber | Clarifier | | Metallic
Dust | 28> | ## NOTES AND LIST OF ASSUMPTIONS FOR TABLE 2* ### Stream No. Sources: MC-S $_7344$, MO-274; gas stream temperature 1050°F; 16.2% SO₂ by volume. ^{*} Same as for Table 1 unless noted. ## SECTION 3 LIMESTONE SCRUBBER COST ESTIMATE The turbulent contact absorber (TCA) tail gas scrubber shown on Figures 1 and 2 was assumed to be the final gas cleaning device that would be used in any copper/nickel smelter built in Minnesota. A cost estimate was prepared listing the capital and operating costs for a TCA limestone scrubber with a venturi prescrubber. The basis for the limestone scrubber costs is a report prepared for TVA by McGlamery (MC-136). The basis for the limestone scrubber design is a Radian report prepared for EPA (BR-R-440). Costs were adjusted using the methods presented by Woods (WO-078) as described in BR-R-440. The SO_2 scrubber design is shown in Figure 3. This is the same conceptual design used for the desulfurization of a steel mill sinter plant (BR-R-440). Tables 3 through 12 present the estimated capital and operating costs for the six cases considered. The first four cases assume that the acid plant tail gas will be scrubbed along with the other weak SO_2 smelter gases. Cases 5 and 6 list costs for scrubbing the gases without the acid plant tail gas. Cases 1 and 3 assume a 90% SO_2 removal efficiency. The other cases assume a scrubber exit gas concentration of 650 ppm SO_2 . This corresponds to new source performance standards (NSPS). The report Appendix lists the process equipment items included in the cost estimate. Figure 3. Process flow diagram - limestone scrubbing process
for steel mill sinter plant application. *Battery Limit ## TABLE 3 ESTIMATED TOTAL CAPITAL INVESTMENT SUMMARY FOR FLUE GAS DESULFURIZATION USING LIMESTONE SLURRY SCRUBBING ### CASE: ELECTRIC FURNACE | | | Case 1 - 90% Scrubber Efficiency | | Case 2 - NSPS | |---|---|---|---|--| | Direct Costs: | | | | | | Process Equipment | | | | | | Materials Handling Feed Preparation Particulate Scrubbing SO ₂ Scrubbing Gas Reheating Gas Handling Solids Disposal Services Particle Recirculation | \$ 32,780
92,750
269,720
389,550
73,450
49,640
184,050
134,730
30,720 | | \$ 30,600
82,920
242,630
347,540
68,830
42,330
166,620
134,730
27,800 | | | Subtotal | | \$1,257,390 | | \$1,143,100 | | Equipment Installation Piping Structural Steel Foundations Insulation and painting Electrical Instruments BL Building and Service* Excavation and Fill Site Preparation Auxiliaries Sludge Ponds (installed) Particulate Disposal Calcium Solids Disposal | | 490,400
377,200
62,900
754,400
25,100
88,000
50,300
62,900
125,700
12,600
46,000
142,000 | | 445,800 342,900 57,200 685,900 22,900 80,000 45,700 57,200 114,300 11,400 37,000 112,000 | | Subtotal Direct Costs | • | \$3,494,890 | • | \$3,155,400 | | Indirect Costs: | | | | | | Engineering Design and Supervision Construction Field Expense Contractor Fees Contingency Subtotal Indirect Costs | | 454,300
485,800
244,600
513,700
\$1,698,400 | | 410,200
438,600
220,900
463,800
1,533,500 | | TOTAL CAPITAL INVESTMENT | | \$5,193,290 | | \$4,688,900 | ### TABLE 4 ### ESTIMATED LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 1: Electric Furnace, 90% Scrubber Efficiency) | | Annual Quantity | Unit Cost, \$ | Total Annual Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|---------------|-----------------------|--| | Direct Costs | | | | | | Delivered raw material | · | | | | | Limestone | 20.7 M mtons | 6.60/mton | 136,600 | 6.58 | | Subtotal | | | 136,600 | 6.58 | | Conversion costs | | | 14.
7 - 2 | | | Operating labor and supervision | 13,500 man-hr | 10.00/man-hr | 135,000 | 6.50 | | Utilities | | | | | | Steam . | 39,600 M kg | 3.31/M kg | 131,100 | 6.31 | | Process water | 196,200 M liters | 0.029 liters | 5,700 | .27 | | Electricity | 12,337,700 kWh | 0.028/kWh | 345,500 | 16.63 | | Maintenance | | | | | | Labor and material, $.09 \times 3,494,890$ | | • | 314,500 | , 15.14 | | Analyses | | | 29,400 | 1.42 | | Subtotal conversion costs | | | 961,200 | 46.27 | | Subtotal direct costs | | | 1,097,800 | 52.85 | | Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | | | 773,800 | 37.25 | | Overhead | • | | | | | Plant, 20% of conversion costs | | | 192,200 | 9.25 | | Administrative, 10% of operating labor | | | 13,500 | .65 | | Subtotal indirect costs | | | 479,500 | 47.15 | | Total annual operating cost | | | 2,077,300 | 100.00 | ### Basis: Life of scrubber, 30 yr. Stack gas rehear to 79.4°C. On-stream time, 7,000 hr/yr. Midwest plant location, 1978 operating costs. Total capital investment, \$5,193,290; subtotal direct investment \$3,494,890. TABLE 5 ESTIMATED LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 2: Electric Furnace, NSPS) | | Annual Quantity | Unit Cost, Ş | Total Annual
Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|--------------|--------------------------|--| | Direct Costs | | | | | | Delivered raw material | | | • | | | Linestone | 22.7 M mtons | 6.60/mt on | 149,800 | 7.77 | | Subtotal | | | 149,800 | 7.77 | | Conversion costs | | | | | | Operating labor and supervision | 13,500 man-hr | 10.00/man-hr | 135,000 | 7.00 | | Utilities | | | | | | Steam | 39,600 M kg | 3.31/M kg | 131,100 | 6.80 | | Process water | 173,000 M liters | 0.029 liters | 5,000 | . 26 | | Electricity | 10,876,000 kWh | 0.028/kWh | 304,500 | 15.79 | | Maintenance | | | | | | Labor and material, .09 x 3,155,400 | | | 284,000 | ,14.72 | | Analyses | | | 29,400 | 1.52 | | Subtotal conversion costs | | | 889,000 | 46.09 | | Subtotal direct costs | | | 1,038,800 | 53.86 | | Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | | | 698,600 | 36.22 | | Overhead | • | | | | | Plant, 20% of conversion costs | | | 177,800 | 9.22 | | Administrative, 10% of operating labor | | | 13,500 | . 70 | | Subtotal indirect costs | | | 889,900 | 46.14 | | Total annual operating cost | | | 1,928,700 | 100.00 | | | | | | | #### Basis. Life of scrubber, 30 yr. Stack gas reheat to 79.4°C. On-stream time, 7,000 hr/yr. Midwest plant location, 19/8 operating costs. Total capital investment, \$4,688,900; subtotal direct investment \$3,155,400. *Battery Limit ### TABLE 6 ### ESTIMATED TOTAL CAPITAL INVESTMENT SUMMARY FOR FLUE GAS DESULFURIZATION USING LIMESTONE SLURRY SCRUBBING ### CASE: FLASH FURNACE | | | Case 3 - 90% Scrubber
Efficiency | | Case 4 - NSPS | |---|--|---|---|---| | Direct Costs: | | | | | | Process Equipment | | | | | | Materials Handling Feed Preparation Particulate Scrubbing SO ₂ Scrubbing Gas Reheating Gas Handling Solids Disposal Services Particle Recirculation | \$ 31,890
89,250
327,050
496,540
101,650
67,240
169,930
134,730
30,720 | | \$ 27,380
71,620
248,359
375,780
81,699
49,690
135,430
134,730
24,660 | | | Subtotal | | \$1,449,000 | | \$1,148,330 | | Equipment Installation Piping Structural Sreel Foundations Insulation and painting Electrical Instruments BL Building and Service* Excavation and Fill Site Preparation Auxiliaries Sludge Ponds (installed) Particulate Disposal Calcium Solids Disposal Subtotal Direct Costs | | 565,100 434,700 72,500 869,400 29,000 101,400 58,000 72,500 144,900 14,500 54,000 144,000 | | 447,800 344,500 57,400 689,000 23,000 80,400 45,900 57,400 114,900 11,500 32,000 85,000 \$3,137,030 | | Indirect Costs: | | | • | | | Engineering Design and Supervision Construction Field Expense Contractor Fees Contingency Subtotal Indirect Costs TOTAL CAPITAL INVESTMENT | | 521,200
557,300
280,600
589,300
1,948,400
\$5,957,400 | | 407,800
436,000
219,600
461,100
1,524,500
\$4,661,530 | | | | | | | ## TABLE 7 LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 3: Flash Furnace, 90% Scrubber Efficiency) | | Annual Quantity | Unit Cost, \$ | Total Annual Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|---------------|-----------------------|--| | Direct Costs | • | | | | | Delivered raw material | | | | | | Limestone | 20.7 M mtons | 6.60/mcon | 136,800 | 5.24 | | Subtotal | | | 136,800 | 5.24 | | Conversion costs | | | | | | Operating labor and supervision | 13,500 man-hr | 10.00/man-hr | 135,000 | 5.17 | | Utilities | | | | | | Steam | 80,400 M kg | 3.31/M kg | 266,100 | 10.19 | | Process water | 223,000 M liters | 0.029/M liter | 6,600 | . 25 | | Electricity | 18,298,000 kWh | 0.028/kWh | 512,300 | 19.63 | | Maintenance | | · · | | | | Labor and material, $.09 \times 4,009,000$ | | | 360,800 | 13.82 | | Analyses | | | 29,400 | 1.13 | | Subtotal conversion costs | | | 1,310,200 | 50.19 | | Subtotal direct costs | | | 1,447,000 | 55.43 | | Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | , | | 887,700 | 34.00 | | Overhead | | | | | | Plant, 20% of conversion costs | | | 262,000 | 10.04 | | Administrative, 10% of operating labor | | | 13,500 | . 52 | | Subtotal indirect costs | | | 1,163,200 | 44.56 | | Total annual operating cost | | | 2,610,200 | 100.00 | #### Basis: Life of scrubber, 30 yr. Stack gas reheat to 79.4°C. On-stream time, 7,000 hr/yr. Midwest plant location, 1978 operating costs. Total capital investment, \$5,957,400 subtotal direct investment, \$4,009,000. TABLE 8 LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 4: Flash Furnace, NSPS) | | Annual Quantity | Unit Cost, \$ | Total Annual Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|---------------|-----------------------|--| | Direct Costs | | | | | | Delivered raw material | | | | | | Limestone | 25.6 M mtons | 6.60/mton | 169,000 | 7.70 | | Subtotal | | | 169,100 | 7.70 | | Conversion costs | | | • | | | Operating labor and supervision |
13,500 man-hr | 10.00/man-hr | 135,000 | 6.15 | | Utilities | | | 5 | | | Steam | 80,400 M kg | 3.31/M kg | 266,100 | 12.13 | | Process water | 169,000 M liters | 0.029/M liter | 4,900 | .22 | | Electricity | 13,562,000 kWh | 0.028/kWh | 379,700 | 17.31 | | Maintenance | | | | | | Labor and material, $.09 \times 3,137,030$ | | *. | 282,300 | 12.87 | | Analyses | | | 29,400 | 1.34 | | Subtotal conversion costs | | | 1,097,400 | 50.02 | | Subtotal direct costs | | | 1,266,500 | 57.72 | | Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | | | 694,600 | 31.66 | | Overhead | | | · | | | Plant, 20% of conversion costs | | | 219,500 | 19.90 | | Administrative, 10% of operating labor | • | | 13,500 | 62 | | Subtotal indirect costs | | | 927,600 | 42.28 | | Total annual operating cost | | | 2,194,100 | 190.00 | #### Basis: Life of scrubber, 30 yr. Stack gas reheat to 79.4°C. On-stream time, 7,000 hr/hr. Midwest plant location, 1978 operating costs. Total capital investment, \$4,661,530 subtotal direct investment, \$3,137,030. ### TABLE 9 ### ESTIMATED TOTAL CAPITAL INVESTMENT SUMMARY FOR FLUE GAS ### DESULFURIZATION USING LIMESTONE SLURRY SCRUBBING ### CASE 5: ELECTRIC FURNACE | Direct Costs: | | Case 5 - NSPS
(no acid plant
tail gas) | |---|--|---| | Process Equipment | | | | Materials Handling Feed Preparation Particulate Scrubbing SO ₂ Scrubbing Gas Reheating Gas Handling Solids Disposal Services Particle Recirculation Subtotal Equipment Installation Piping | \$ 30,690
88,400
157,050
264,240
53,540
113,590
175,040
134,800
29,420 | \$1,017,350
396,800 | | Structural Steel Foundations Insulation and painting Electrical Instruments BL Building and Service* Excavation and Fill Site Preparation Auxiliaries Sludge Ponds (Installed) Particulate Disposal Calcium Solids Disposal | | 305,200 50,900 610,400 20,300 71,200 40,700 50,900 101,700 10,200 6,000 60,700 \$2,742,350 | | Indirect Costs: | | ` | | Engineering Design and
Supervision
Construction Field Expense
Contractor Fees
Contingency
Subtotal Indirect Costs | | \$ 356,500
381,200
192,000
403,100
\$1,332,800 | | TOTAL CAPITAL INVESTMENT | | \$4,075,150 | *Battery Limit ## TABLE 10 ESTIMATED LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 5: Electric Furnace, NSPS, no acid plant tail gas) | | Annual Quantity | Unit Cost, \$ | Total Annual Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|----------------|-----------------------|--| | Direct Costs | | | | | | Delivered raw material | | | • | | | l.i mestone | 31.0 M mtons | 6.60/mton | 204,400 | 10.93 | | Subtotal | | | 204,400 | 10.93 | | Conversion costs | | | - | ***
** | | Operating labor and supervision | 13,500 man-hr | 10.00/man-hr | 135,000 | 7.22 | | Utilities | | | | | | Steam | 18,700 M kg | 3.31/M kg | 61,900 | 3.31 | | Process water | 222,200 M liters | 0.029/M liters | 6,400 | . 34 | | Electricity | 13,970,000 kWh | 0.028/kWh | 391,200 | 20.92 | | Maintenance | | , | | | | Labor and material, $.09 \times 2,742,350$ | | | 246,800 | 13.20 | | Analyses | | | 29,400 | 1.57 | | Subtotal conversion costs | | | 870,700 | 46.57 | | Subtotal direct costs | | | 1,075,100 | 57.50 | | - Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | • | | 607,200 | 32.47 | | 0verhead | | | | | | Plant, 20% of conversion costs | | | 174,100 | 9.31 | | Administrative, 10% of operating labor | | | 13,500 | . 72 | | Subtotal indirect costs | | | 794,800 | 42.50 | | Total annual operating cost | | | 1,869,900 | 100.00 | #### Basis: Life of scrubber, 30 yr. Stack gas reheat to 79.4°C. On-stream time, 7,000 hr/yr. Midwest plant location, 1978 operating costs. Total capital investment, \$4,075,150 subtotal direct investment \$2,742,350 *Battery Limit ### TABLE 11 ## ESTIMATED TOTAL CAPITAL INVESTMENT SUMMARY FOR FLUE GAS DESULFURIZATION USING LIMESTONE SLURRY SCRUBBING ### CASE 6: FLASH FURNACE | Direct Costs: | | Case 6 - NSPS
(no acid plant
tail gas) | |---|---|--| | Process Equipment | | | | Materials Handling Feed Preparation Particulate Scrubbing SO ₂ Scrubbing Gas Reheating Gas Handling Solids Disposal Services Particle Recirculation | \$ 28,850
77,410
284,420
396,980
66,800
46,130
116,630
134,800
27,090 | A. 150.000 | | Subtotal | | \$1,152,020 | | Equipment Installation Piping Structural Steel Foundations Insulation and painting Electrical Instruments BL Building and Service* Excavation and Fill Site Preparation Auxiliaries Sludge Ponds (Installed) Particulate Disposal Calcium Solids Disposal | | 449,300 345,600 57,600 691,200 23,000 80,600 46,100 57,600 115,200 11,500 16,900 65,600 \$3,112,220 | | Indirect Costs: | | | | Engineering Design and Supervision Construction Field Expense Contractor Fees Contingency Subtotal Indirect Costs TOTAL CAPITAL INVESTMENT | | 404,600
432,600
217,800
457,500
1,512,500
\$4,624,720 | #### TABLE 12 ### ESTIMATED LIMESTONE SLURRY PROCESS TOTAL ANNUAL OPERATING COSTS (Case 6: Flash Furnace, NSPS, no acid plant tail gas) | | Annual Quantity | Unit Cost, \$ | Total Annual
_ Cost, \$ | Percent of
Total Annual
Operating Cost | |--|------------------|---------------|----------------------------|--| | Direct Costs | | | | | | Delivered raw material | | | | | | Limestone | 25.7 M mtons | 6.60/mt on | 169,400 | 8.30 | | Subtotal | | | 169,400 | 8.30 | | Conversion costs | | | 4. | | | Operating labor and supervision | 13,500 man-hr | 10.00/man-hr | 135,000 | 6.61 | | Utilities | | | `` | | | Steam | 43,700 M kg | 3.31/M kg | 144,600 | 7.08 | | Process water | 169,300 M liters | 0.029/M liter | 4,900 | . 24 | | Electricity | 13,586,700 kWh | 0.028/kWh | 380,400 | 18.64 | | Maintenance | | | | | | Labor and material, $.09 \times 3,112,200$ | | | 280,100 | 13.72 | | Analyses | | | 29,400 | 1.44 | | Subtotal conversion costs | | | 974,400 | 47.73 | | Subtotal direct costs | | | 1,143,800 | 56.03 | | Indirect Costs | | | | | | Average capital charges at 14.9% | | | | | | of total capital investment | | | 689,100 | 33.76 | | Overhead | | | • | | | Plant, 20% of conversion costs | • | | 194,900 | 9.55 | | Administrative, 10% of operating labor | | | 13,500 | .66 | | Subtotal indirect costs | | | 897,500 | 43.97 | | Total annual operating cost | | | 2,041,300 | 100.00 | #### Basis: Life of scrubber, 30 yr. Stack gas reheat to 79.4°C. On-stream time, 7,000 hr/yr. Midwest plant location, 1978 operating costs. Total capital investment, \$4,624,720; subtotal direct investment, \$3,112,220 ## SECTION 4 LIMESTONE SCRUBBER WATER CONSUMPTION ESTIMATE The limestone scrubber design used for the cost estimates in Section 3 (see Figure 3) is a closed-loop system. Water consumption is estimated to range between 40 and 50 gallons per minute. The actual consumption will vary depending on the quantity of particulates in the gas stream and the desired prescrubber particulate removal efficiency. This assumes a constant gas volume and SO_2 concentration. Approximately 95% of the water consumed is expected to be vaporized as the gas cools and exits in the stack gases. The remaining 5% will remain in the settled sludge or evaporate from the settling pond. ## SECTION 5 ELECTROSTATIC PRECIPITATOR CAPITAL COST ESTIMATES Electrostatic precipitator costs versus efficiency were estimated using an article by Caplan in <u>Chemical Engineering</u>, p. 153, April 10, 1978 and cost figures provided in a private conversation with Leslie E. Sparks of IERL in North Carolina. Table 13 lists the efficiency, the corresponding ft² of collecting surface required per 1000 scfm of gas, and the ft² required at each efficiency relative to 97% removal. Table 14 translates these figures into installed capital costs for the various smelter offgases considered in 1977 dollars. These cost figures should be regarded as rough estimates to be used only for economic modelling in the Regional Copper-Nickel Study. TABLE 13. COLLECTING SURFACE VERSUS EFFICIENCY FOR METALLURGICAL HOT ELECTROSTATIC PRECIPITATORS† | | Ft ² collecting surface | | Ft ² required | |------------|------------------------------------|---|---------------------------| | Efficiency | 1000 SCFM | | Ft ² @ 97% eff | | 90 | 152 | | 0.655 | | 95 | 200 | | 0.862 | | 97 | 232 | 1 | 1.000 | | 98 | 259 | | 1.116 | | 99 | 301 | | 1.297 | | 99.5 | 350 | | 1.509 | | 99.7 | 381 | | 1.642 | | 99.9 | 460 | | 1.983 | | 99.95 | 502 | | 2.164 | [†] Source: Caplan, F., Chemical Engineering, p. 153, April 10, 1978. TABLE 14. ESTIMATED CAPITAL COST INSTALLED FOR REMOVING PARTICULATES FROM VARIOUS SMELTER GAS STREAMS | | | F | Flash Furnace Case | | | Electric Furnace Case | | | | | |------------------------------|-------------|--------|--------------------|---------------------|--------|-----------------------|-------|-------|-----------|--------| | Gas | Gas
Flow | C | | ost (M\$)
ciency | * | Gas Flow | C | • | Cost (M\$ |)* | | Stream | (1000 SCFM) | 97 | 99 | 99.5 | 99.9 | (1000 SCFM) | 97 | 99 | 99.5 | 99.9 | | Dryer | 60.0 | 417.6 | 541.8 | 630.0 | 828.0 | | | | | | | Roaster | | | | | | 25.2 | 175.4 | 227.6 | 264.6 | 347.8 | | Smelting
Furnace | 47.0 | 327.1 | 424.4 | 493.5 | 648.6 | 12.3 | 85.6 | 111.1 | 129.2 | 169.7 | | Copper
Converters | 49.2 | 342.4 | 444.3 | 516.6 | 679.0 | 49.2 | 342.4 | 444.3 | 516.6 | 679.0 | | Nickel
Converter | 10.6 | 73.8 | 95.7 | 111.3 | 146.3 | 10.6 | 73.8 | 95.7 | 111.3 | 146.3 | | Weak SO ₂
Gast | 178.3 | 1241.0 | 1610.0 | 1872.2 | 2460.5 | 109.7 | 763.5 | 990.6 | 1152.0 | 1513.9 | $[\]ensuremath{^{\dagger}} \ensuremath{\mathrm{If}}$ particulate removal is not performed in SO_2 scrubber. ^{*@} $\$30/\mathrm{Ft}^2$ of collecting surface (installed); M\$ = thousands of dollars. ## SECTION 6 $\label{eq:section} {\rm NO}_{\times} \ {\rm EMISSIONS} \ {\rm EVALUATION}$ No literature data was found containing data on NO_{\times} emissions from either copper or nickel smelters. Data provided by a smelting company indicated that a Japanese copper smelter measured 4 ppm NO_{\times} at the outlet of their TCA SO_2 scrubber ($\sim 200,000$ scfm). The value of 4 ppm seems reasonable because of the following: - No fuel nitrogen of the form R-N is present in the concentrate. - All NO_X present in smelting furnace off gases comes from thermal fixation of molecular nitrogen (N_2) in the combustion air. - The smelting reactions occur at temperatures lower than those needed for significant NO_{\times} generation i.e., below 3000°F (BA-002). - Local temperatures on the concentrate particles should be lower than the temperature on coal particles. First, because of the lower heat of reaction and second, because the copper and iron present act as a significant heat sink. - The expected residence time, approximately 20 seconds (KE-162), and average temperature, approximately 2800°F, are not sufficient to generate significant NO_{\times} concentrations based on reported reaction rate calculations (BA-002) for the following reaction: $$N_2 + O_2 \stackrel{\leftarrow}{\rightarrow} 2NO$$ These qualitative statements can be supported by using the following equation (BA-002): $$\frac{d[NO]}{dt} = A_{f} e^{-E_{f}/RT} [N_{2}][O_{2}]^{\frac{1}{2}}$$ $$-A_{r} e^{-E_{r}/RT} [NO]^{2}[O_{2}]^{-\frac{1}{2}} g \cdot moles/cc/sec$$ where: $\frac{d[NO]}{dt}$ = net formation rate for NO_X (assumed constant for this calculation), A, = Frequency factor, T = 2500°F for the case with no oxygen enrichment; 2800°F with 300 Nm 3 O $_2$ /metric ton Cu, and E_f , E_r = Forward and reverse reaction activation energies. assume: a) $N_2:0_2$ mole ratio is 0.54:0.46 for oxygen enriched case, - b) Furnace residence time is 20 seconds (KE-162), and - c) Flash furnace shaft is a homogeneous reactor. These approximations allow the NO_{\times} formation rate (moles/sec) and the NO_{\times} concentration (ppm) to be calculated. For the no O_2 enrichment case, an NO_{\times} concentration of 3 ppm NO_{\times} was calculated. For the case of 300 Nm 3 O_2 /metric ton Cu, a concentration of 15 ppm NO_{\times} was calculated. These numbers are certainly on the same order of magnitude as the 4 ppm NO_{\times} figure reported by the Japanese smelting company. Of course, the 4 ppm NO_{\times} value includes approximately two 2 volumes of dilution air for every one of process gas. The 3 ppm and 15 ppm NO_{\times} calculated above do not. Table 15 presents some information on power plant NO_{\times} emissions which will place potential smelter NO_{\times} emissions in perspective. The power plant data in Table 15 (FA-154) are for different types of firing mechanisms, i.e., different flame temperatures. A typical gas flow from a 500 MW coal-fired power plant should range from 1.0 to 1.25 million scfm depending on the coal heating value and moisture content. Obviously, the NO_{\times} emissions from a smelter ($\mathrm{\sim}200,000~\mathrm{scfm}$, 4 ppm NO_{\times}) would be insignificant compared to only one 500 MW power plant. TABLE 15. CONCENTRATION RANGES OF NO_{\times} FROM COAL-FIRED POWER PLANTS | Type of Firing | Typical NO_{\times} concentration, ppm | |----------------------|---| | Vertical | 225 - 310 | | Horizontally opposed | 340 - 375 | | Spreader (stoker) | 400 - 470 | | Tangential (corner) | 420 - 500 | | Front wall | 390 - 600 | | Cyclone | 800 - 1200 | ## SECTION 7 ESTIMATE OF PARTICULATE EMISSIONS There is no existing data which would enable an exact calculation to be made of the total particulates generated by a smelter. As a result, it was estimated that ten percent of the incoming concentrate would be released as particulate in the smelter gas streams. This is a conservative estimate, the actual number is believed to be smaller. The gas streams are then assumed to be cleaned by the various particulate control devices, each assigned a particulate removal efficiency consistent with those reported for similar control applications. This is shown schematically in Figure 4 for the flash and electric furnace cases. The total particulate emissions estimated were 285 and 0.3 metric tons per year for the flash and electric furnace cases respectively. The removal efficiencies shown assume normal operating conditions within the design limitations of the control technology. Particulate emissions during upset conditions could be significantly higher than those indicated for normal conditions. The emission sources listed in Figure 4 are subject to both federal and state air pollution control regulations. Two types of federal regulations apply to the smelting schemes considered in this report. These are: - Standards of Performance for New Stationary Sources (NSPS)†, and - Prevention of Significant Air Quality Deterioration (PSD) ††. These standards are subject to a certain amount of interpretation with respect to their applicability to primary copper/nickel smelting. It is presumed here that NSPS would apply to the dryer or roaster, smelting furnace, and converters as stated in EPA 40 CFR 60.160. The entire smelter would be subject to PSD requirements as stated in Part 51, Requirements for Preparation, Adoption, and Submission of Implementation Plans††. In addition, any surface mine or concentrating facility would also be required to meet PSD regulations. Figure 4. Particulate emissions from flash and electric smelting schemes. #### REFERENCES - BA-002 Bakay, Tibor, Chem. Abstract <u>62</u>, 10109 h (1965). - BR-R-440 Brown, Gary D., Richard T. Coleman, and James C. Dickerman, Desulfurization of steel mill sinter plant gases, draft report. Radian Project No. 200-045-58, EPA Contract No. 68-02-1319, Task 58. Austin, TX, Radian Corp., June 1976. - DA-137 Dayton, Stan, "Inspiration's design for clean air," Eng. Min. J. 175, 85 (1974). - FA-154 Faucett, H. L., J. D. Maxwell, and T. A. Burnett, <u>Technical assessment of NO</u> removal processes for utility application, final report. EPA-IAG No. D7-E721-FU, EPA 600/7-77-127, EPRI RP 783-1, EPRI AF-568, TVA Bull. Y-120. Muscle Shoals, AL, Tennessee Valley Authority, Office of Agricultural and Chemical Development, Nov. 1977. - HA-373 Harkki, S. U. and J. T. Huusela, "New developments in Outokumpu flash smelting method," Paper A74-16. New York, The Metallurgical Society of AIME. - MC-136 McGlamery, G. G., et al., <u>Detailed cost estimates for advanced effluent desulfurization processes</u>. Interagency Agreement EPA IAG-134 (D). Pt. A. Research Triangle Park, NC, Control Systems Lab., NERC, 1974. - MC-S-344 McCoy, Jack B., "Present smelting practice at Anaconda, Montana." Presented at the Mining Convention of the American Mining Congress, San Francisco, CA, Sept. 1977. #### REFERENCES (Continued) - MO-374 Montana, State of, Dept. of Health, Engineering study, particulate control alternatives for copper converter building at the Anaconda Company, Anaconda, Montana. Helena, MT, June 1976. - SH-A-347 Sharma, S. N., R. R. Beck, and D. B. George, "Process analysis and economics of flash technology," J. Metals 27(8), 7-13 (1975). - WO-078 Woods, Donald R., "Technique for the estimation of capital costs for the process industry," Presented at the Symposium on Cost Estimation, Permian Basin Section of the AIChE, Odessa, TX, April 1975. - † Environmental Protection Agency, "Standards of Performance for Primary Copper Smelters," 40 CFR 60.160, Env. Rept., 121:1527. - th Environmental Protection Agency, "1977 Clean Air Act; Prevention of Significant Air Quality Deterioration," Fed. Reg. 43 (118), 26379-26410 (1978). APPENDIX # TABLE A-1 CASE 1, ELECTRIC FURNACE, 90% SCRUBBER EFFICIENCY WORK SHEETS FOR PROCESS EQUIPMENT COSTS AREA 1 - MATERIALS HANDLING | - | Item | <u>No .</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|--|-------------|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Unloading
hopper No. 1 | 1 | Capacity .30 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 580 | 5 80 | | 2. | Limestone
feeder No. 1
(vibrating) | 1 | 5.5 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 1,120 | 1,120 | | 3. | Conveyor
(belt) No. l | 1 | 5.5 kg/s | 0.81 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 580 | 5 30 | | 4. | Conveyor
(belt) No. 2 | 1 | 5.5 kg/s | 0.81 | Fund of Cost Engr.
1964
Chem. Engr.
3-24-69
Guthrie | 2,760 | 2,760 | | 5. | Hoppers
under pile | 3 . | Capacity .20 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 470 | 1,410 | | 6. | Limestone
feeder No. 2
(vibrating) | 3 | 2.6 kg/s | 0.58 | Chem. Engr. 3-24-69 | 580 | 1,740 | | 7. | Conveyor (belt) No. 3 | 1 | 2.6 kg/s | 0.65
0.81 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 4,290 | 4,290 | | 8. | Tunnel
sump pump | 2 | 2.3 x 10 ⁻⁴ m ³ /s, carbon steel, neoprene lining, 163.6 watt motor | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 690 | 1,380 | | 9. | Elevator
No. l | 1 | 2.6 kg/s | 0.83 | Chem. Engr. 3-24-69 | 2,450 | 2,450 | | 10. | Bin | 1 | Capacity 14.9 m^2 , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 5,240 | 5,240 | | 11. | Car shaker | 1 | Railroad trackside vibrator | | / | 6,920 | 5,920 | | 12. | Dust
collecting
system No. 1 | 1 | .ll m³/s, inertial
separators, cyclone,
hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 530 | 5 30 | | 13. | Dust
collecting
system No. 2 | 1 | .31 m³/s, inertial
separators, cyclone,
hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69 | 1,100 | 1,100 | | 14. | Bag filter
system | 1 | 0.83 m³/s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,630 | 2,630 | | | SUBTOTAL | | | | | | 32,780 | 36 ### TABLE A-1 (Continued) AREA 2 - FEED PREPARATION | | Item | Мо. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Bin discharge
feeder | 1 | 0.7 kg/s, carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 310 | 310 | | 2. | Weigh feeder | 1 | 0.7 kg/s, carbon steel | 0.65 | Chem. Engr. 3-24-69
Guthrie | 3,750 | 3,750 | | 3. | Gyratory
crusher | 1 | 0.7 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 2,190 | 2,190 | | 4. | Elevator
No. 2 | 1 | 0.7 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 1,100 | 1,100 | | 5. | Wet ball | 1 | 6.9 kg/s | 0.65 | Chem. Engr. 3-24-69 | 50,740 | 50,740 | | | mill | 1 | 75,230 MW motor | 1.07 | Guthrie
Fund. of Cost Engr.
1964 | 3,610 | 3,610 | | 6. | Slurry feed
tank | 1 | Capacity 18.3 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 5,330 | 5,330 | | | Lining | 1 | 5.57 x 10 ⁻³ m neoprene | | | 4,710 | 4,710 | | 7. | Agitator,
slurry
feed
tank | 1 | 1308 W, neoprene / coated | 0.50
0.64 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,960 | . 2,960 | | 3. | Pumps, slurry
feed tank | 2 | $6.6 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 1,890 | 3,780 | | 9. | Dust
collecting
system | 1 | .41 m³/s, inertial separator, cyclone, hoppers, fan, and drive | 0.30 | Chem. Engr. 3-24-69
Guthrie | 1,370 | 1,370 | | 10. | Hoist | 1 | 1579 kg electric | 0.81 | Popper, H. | 10,270 | 10,270 | | 11. | Bag filter
system | 1 | 0.83 m ³ /s, automatic fabric dust collectors, bag support, shaker system, isolation damper, motor, drive, dust hopper, fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,630 | 2,630 | | | SUBTOTAL | | | | | | 92,750 | ### TABLE A-1 (Continued) AREA 3 - PARTICULATE SCRUBBING | | Item | <u>No .</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|--|-------------|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Tank particulate scrubber, effluent hold | 1 | Capacity 174.8 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 30,640 | 30 ,640 | | | Lining | 1 | 5.57 x 10 ⁻³ m neoprene | | | 22,500 | 22,500 | | 2. | Agitator,
effluent
hold tank | 1 | 6542 W, neoprene
coated | 0.26
0.50 | Fund of Cost Engr.
Guthrie
Chem. Engr. 3-24-69
Guthrie | 5,850 | 5,850 | | 3. | Pumps,
recycle
slurry | 2 | .23 m³/s, carbon
steel, neoprene
lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 16,780 | 33,560 | | 4. | Venturi
scrubber | 1 | 52.1 m ³ /s, carbon steel, neoprene lined | 0.60 | Universal Oil
Products | 113,090 | 118,090 | | 5. | Venturi
sump | 1 | Carbon steel, neoprene
lining | 0.68 | Chem. Engr. 3-24-69
Guthrie | 30,010 | . 30,010 | | 6. | Soot blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 7. | Bleed pump | 2 | $1.4 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 1,910 | 3,820 | | | SUBTOTAL | | | | | | 269,720 | 38 ### TABLE A-1 (Continued) AREA 4 - SO₂ SCRUBBING | | Item | No. | Description | - Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----------|--|-----|---|--------------------------------|---|--------------------------------|---------------------------| | 1. | Spray tower scrubber | 1 | Gas Flow 52.1 m ³ /s, carbon steel, neoprene | | Western Precipitator
Div., Joy Mfg. Co. ^a | 140,040 | 140,040 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 30,010 | 30,010 | | 3. | Tank,
absorber
effluent
hold | 1 | Capacity 620.8 m³, carbon steel, field erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 43,920 | 43,920 | | | Lining | 1 | 5.57×10^{-3} m neoprene | | *** | 37,500 | 37,500 | | 4. | Agitator,
SO ₂ absorber
hold tank | 1 | 26,167 W, neoprene coated | 0.50 | Chem. Engr. 3-24-69
Guthrie | 12,410 | 12,410 | | 5. | Pumps, SO ₂ absorber recycle | 3 | .40 m ³ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 25,660 | 76,980 | | ó. | Pumps,
makeup
water | 1 | $1.1 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,480 | 1,480 | | 7. | Soot
blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 8. | Demister | 1 | Carbon steel, neoprene lined | | | 13,980 | 13,980 | | 9. | Pump, bleed | 2 | $5.9 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,920 | 3,340 | | 10. | Tank,
demister
wash | 1 | Capacity $1.66~\mathrm{m}^3$, carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,340 | 1,340 | | 11. | Pump,
demister
wash | 2 | 1.1 \times 10 ⁻³ m ³ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
if motor and impeller | 1,400 | 2,300 | | | SUBTOTAL | | | | | | <u> 589,330</u> | ^aIndicates source of spray tower cost ### TABLE A-l (Continued) AREA 5 - REHEAT | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|---|------|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Steam
reheater | 1 | 1.7 x 10 ⁵ W rating 64.4 m ² surface area | 0.80 | Chem. Engr. 3-24-69 | 48,200 | 48,200 | | 2. | Soot | 5 | | 1.00 | TVA | 5,050 | 25,250 | | | SUBTOTAL | | | | | | 73,450 | | | | | AREA 6 - | GAS HANDLING | | | | | | Icem | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
 | | 1. | Fan | 1 | 1.01 x 10° W drive | 0.68 | Chem. Engr. 3-24-69 | 49,640 | 49,640 | | | Item | No . | AREA 7 - SC Description | Size-Cost Scale Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Clarifier | 1 | 5.1 x 10 ³ m ³ /s | 0.68 | PEDCo (PE-146) | 164,770 | 164,770 | | 2. | Pumps, pond
feed | 2 | $1.3 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 1,490 | 2,980 | | 3. | Pump,
clarifier
water recycle | 2 | $3.8 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 3,310 | 6,620 | | 4. | Pumps,
particulate
pond water
recycle | 2 | 3.2×10^{-3} m $^3/s$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 3,790 | 7,580 | | 5. | Pumps, SO ₂
pond water
recycle | 2 | $5.1 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | | | 1,050 | 2,100 | | | SUBTOTAL | | | | | | 134,050 | ### TABLE A-1 (Continued) AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Bas
Co:
Ea:
(19 | t
h | Total
Mid-1977
Cost | |----|------------------------------------|-----|-------------|------------------------------|------------------
--------------------------|--------|---------------------------| | 1. | Payloader | | | | | 31, | 80 | 31,280 | | 2. | Plant
vehicles | | | | | | • | 12,630 | | 3. | Maint. & instrument shop-equipment | | | ." | | 33,: | 00 | 33,300 | | 4. | Service
building-
equipment | | • | | | 44,1 | .50 | 44,150 | | 5. | Stores-
equipment | | | | | 13,3 | 70 | 13,370 | | | SUBTOTAL | | | | | | | 134,730 | #### AREA 10 - PARTICLE RECIRCULATION | | Item | <u>No.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----|---|------------|--|------------------------------|---|--------------------------------|--------------------------| | 1. | Wet ball mill | 1 | 2.8 x 10 ⁻⁴ m ³ /s | 0.65 | McGlamery | 28,780 | 23,730 | | 2. | Pump,
particle
recirculation | 2 | $2.8 \times 10^{-4} \text{ m}^3/\text{s}$, molded polypropylene | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 480 | 950 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity 1.0 m ³ , carbon steel, neoprene lined | 0.68 | McGlamery | 9 30 | 980 | | | SUBTOTAL | | | | | | 30 , 720 | TABLE A-2 CASE 2, ELECTRIC FURNACE, NSPS* WORK SHEET FOR PROCESS EQUIPMENT COSTS AREA 1 - MATERIALS HANDLING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197 ⁻
Cost | |-----|--|-----|---|------------------------------|---|--------------------------------|---------------------------------------| | 1. | Unloading
hopper No. 1 | 1 | Capacity .26 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 520 | 520 | | 2. | Limestone
feeder No. l
(vibrating) | 1 | 4.8 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 1,040 | 1,040 | | 3. | Conveyor
(belt) No. 1 | 1 | 4.8 kg/s | 0.81 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 520 | 520 | | 4. | Conveyor (belt) No. 2 | 1 | 4.8 kg/s | 0.81 | Fund, of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 2,470 | 2,470 | | 5. | Hoppers
under pile | 3 | Capacity .18 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 430 | 1,290 | | ó. | Limestone
feeder No. 2
(vibrating) | 3 | 2.3 kg/s | 0.58 | Chem. Engr. 3-24-69 | 540 | 1,620 | | | Conveyor (belt) No. 3 | 1 | 2.3 kg/s | 0.65
0.31 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 3,960 | 3,960 | | 3. | Tunnel
sump pump | 2 | $2.4 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lining, 141.7 watt motor | quirement | on gpm and head re-
is resulting in
of motor and impeller | 520 | 1,240 | | 9. | Elevator
No. 1 | 1 | 2.3 kg/s | 0.33 | Chem. Engr. 3-24-69 | 2.320 | 2,320 | | 10. | Bin | 1 | Capacity 12.9 m², carbon steel | 0.68 | Chem. Engr. 3-24-69 | 4,760 | 4,760 | | 11. | Car shaker | 1 | Railroad trackside vibrator | | | 6,920 | 6,920 | | 12. | Dust
collecting
system No. 1 | 1 | .09 m³/s, inertial
separators, cyclone,
hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 490 | 490 | | 13. | Dust
collecting
system No. 1 | 1 | .26 m³/s, inertial separators, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69 | 960 | 960 | | 14. | Bag filter
system | 1 | 0.77 m ² /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,490 | 2,498 | | | SUBTOTAL | | | | | | ******** | | | | | | | | | 30,633 | New Source Performance Standards, 650 ppm SO₂ in scrubber effluent ### TABLE A-2 (Continued) AREA 2 - FEED PREPARATION | | Item | Νο. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|-----|---|------------------------------|---|--------------------------------|---------------------------| | 1. | Bin discharge
feeder | 1 | .6 kg/s, carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 280 | 280 | | 2. | Weigh feeder | 1 | .6 kg/s, carbon steel | 0.65 | Chem. Engr. 3-24-69
Guthrie | 3,390 | 3,390 | | 3. | Gyratory
crusher | 1 | .6 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 1,820 | 1,820 | | 4. | Elevator
No. 2 | 1 | .6 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 990 | 990 | | 5. | Wet ball | 1 | 6.0 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 46,330 | 46,330 | | | | 1 | 65,120 W motor | 1.07 | Fund. of Cost Engr.
1964 | 3,100 | 3,100 | | б. | Slurry feed cank | 1 | Capacity 15.8 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 4,830 | 4,330 | | | Lining | 1 | 4.82 x 10 ⁻³ m neoprene | | | 4,060 | 4,060 | | 7. | Agitator,
slurry
feed
tank | 1 | 1132 W, neoprene coated | 0.50
0.46 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,760 | 2,760 | | 3. | Pumps,
slurry feed
tank | 2 | $5.8 \times 10^{-4} \text{ m}^3/\text{s}$, carbon sceel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 1,730 | 1,730 | | 9. | Dust
collecting
system | 1 | .36 m³/s, inertial separator, cyclone, hoppers, fan, and drive | 0.30 | Chem. Engr. 3-24-69
Guthrie | 1,240 | 1.240 | | 10. | Hoist | 1 | 1367 kg electric | 0.81 | Popper, H. | 9,130 | 9,130 | | 11. | Bag filter
system | 1 | 0.71 m ³ /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,360 | 2,360 | | | SUBTOTAL | | | | | | | ### TABLE A-2 (Continued) AREA 3 - PARTICULATE SCRUBBING | | Item | <u>No.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----|--|------------|--|------------------------------|---|--------------------------------|--------------------------| | 1. | Tank particulate scrubber, effluent hold | 1 | Capacity 152.1 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 27,870 | 27,870 | | | Lining | 1 | 4.82 x 10 ⁻³ m neoprene | | | 20,340 | 20,340 | | 2. | Agitator
effluent,
hold tank | 1 | 5662 W, neoprene coated | 0.26
0.50 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 5,630 | 5,630 | | 3. | Pumps,
recycle
slurry | 2 | .20 m ³ /s, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 15,220 | 30,440 | | 4. | Vencuri
scrubber | 1 | 41.1 m³/s, carbon steel, neoprene lined | 0.60 | Universal Oil
Products | 102,430 | 102,430 | | 5. | Venturi
sump | 1 | Carbon steel, neoprene lining | 0.68 | Chem. Engr. 3-24-69
Guthrie | 27,230 | 27,230 | | 5. | Soot blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 7. | 3leed pump | 2 | $1.2 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 1,720 | 3,440 | | | SUBTOTAL | | | | | | | | | | | | | • | | 242,530 | 44 ### TABLE A-2 (Continued) AREA 4 - SO₂ SCRUBBING | - | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|--|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Spray tower scrubber | 1 | Gas Flow 41.1 m ³ /s, carbon steel, neoprene | | Western Precipitator
Div., Joy Mfg. Co.a | 118,620 | 118,620 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 27,230 | 27,230 | | 3. | Tank,
absorber
effluent
hold | 1 | Capacity 537.4 m³, carbon steel, field erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 39,810 | 39,810 | | | Lining | 1 | 4.82×10^{-3} m neoprene | | | 34,000 | 34,000 | | 4. | Agitator, SO ₂
absorber
hold tank | 1 | 22,650 W, neoprene
coaced | 0.50 | Chem. Engr. 3-24-69
Guthrie | 12,100 | 12,100 | | 5. | Pumps, SO ₂
absorber
recycle | 3 | .35 m ³ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 23,370 | 70,110 | | 6. | Pumps,
makeup
wacer | 1 | 9.2 x 10 ⁻⁴ m ¹ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 1,300 | 1,300 | | 7. | Soot blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 8. | Demister | 1 | Carbon steel, neoprene lined | | | 11,840 | 11,840 | | 9. | Pump, bleed | 2 | $5.1 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,730 | 3,460 | | 10. | Tank,
demister wash | 1 | Capacity 1.43 m³, carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,220 | 1,220 | | 11. | Pump,
demister wash | . 2 | $9.9 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is
resulting in
if motor and impeller | 1,300 | 2,600 | | | SUBTOTAL | | | | | | | | | | | | | | | 347,540 | ^aIndicates source of spray tower cost ### TABLE A-2 (Continued) AREA 5 - REHEAT | | Item | No. | Description | Size-Cost
Scale
- Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|--|------|--|--------------------------------|---|--------------------------------|----------------------------| | 1. | Steam
reheater | 1 | 1.5 x 10^5 W rating 55.7 m surface area | 0.80 | Chem. Engr. 3-24-69 | 43,580 | 43,580 | | 2. | Soot | 5 | | 1.00 | TVA | 5,050 | 25,250 | | | SUBTOTAL | | | | | | 68,830 | | | | | • | | | | | | | | | | | | | | | | | , | AREA 6 - | GAS HANDLING | | | | | | | | | | | | | | | Item _ | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Fan | 1 | 7.99 x 10 ⁵ W drive | 0.68 | Chem. Engr. 3-24-69
Guthrie | 42,330 | 42,330 | | | | | , | | | | | | | | | <u>AREA 7 - SO</u> | LIDS DISPOSAL | | | | | | | | | | | _ | | | | Item | No . | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197 -
Cost | | 1. | | 1 | 4.4 x 10 ³ m ³ /s | 0.68 | PEDCo (PE-146) | 149,040 | 149,040 | | 2. | Pumps, pond
feed | 2 | 1.1×10^{-3} m $^3/s$, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 1,330 | 2,660 | | 3. | Pump,
clarifier
water
recycle | 2 | 3.4×10^{-3} m ³ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 3,060 | 6,120 | | 4. | Pumps,
particulate
pond water
recycle | 2 | $2.8 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 3,450 | 6,900 | | 5. | Pumps, SO:
pond water
recycle | 2 | $4.4 \times 10^{-4} \text{ m}^3/\text{s}$, carbon sceel, neoprene lined | | | 950 | 1,900 | | | SUBTOTAL " | | | | | | | 166,620 ### TABLE A-2 (Continued) AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|------------------------------------|-----|-------------|------------------------------|------------------|--------------------------------|---------------------------| | 1. | Payloader | | | | | 31,280 | 31,280 | | 2. | Plant
vehicles | | | |
• | | 12,630 | | 3. | Maint. & instrument shop-equipment | | | **** | | 33,300 | 33,300 | | 4. | Service
building-
equipment | | | | | 44,150 | 44,150 | | ·5. | Stores-
equipment | | | | | 13,370 | 13,370 | | | SUBTOTAL | | , | | | | 134,730 | #### AREA 10 - PARTICLE RECIRCULATION | | Item | <u>No.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|---|------------|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Wet ball mill | 1 | 2.4 x 10 ⁻⁴ m ³ /s | 0.65 | McGlamery | 26,030 | 26,030 | | 2. | Pump,
particle
recirculation | 2 | 2.4 x 10 m ³ /s, molded polypropylene | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 430 | 860 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity 0.9 m³, carbon steel, neoprene lined | 0.68 | McGlamery | 910 | 910 | | | SUBTOTAL | | | | | | 27,800 | ## TABLE A-3 CASE 3, FLASH FURNACE, 90% SCRUBBER EFFICIENCY WORK SHEET FOR PROCESS EQUIPMENT COSTS AREA 1 - MATERIALS HANDLING | | | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197 ⁻
Cost | |-----|--|-----|--|------------------------------|---|--------------------------------|---------------------------------------| | 1. | Unloading
hopper No. 1 | 1 | Capacity .27 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 540 | 540 | | 2. | Limestone
feeder No. 1
(vibrating) | 1 | 5.0 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 1,060 | 1,060 | | 3. | Conveyor
(belt) No. 1 | 1 | 5.0 kg/s | 0.81 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 540 | 540 | | 4. | Conveyor (belt) No. 2 | 1 | 5.0 kg/s | 0.81 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 2,550 | 2,550 | | 5. | Hoppers
under pile | 3 | Capacity .13 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guchrie | 450 | 1,350 | | 6. | Limestone
feeder No. 2
(vibrating) | 3 | 2.4 kg/s , | 0.58 | Chem. Engr. 3-24-69
Guchrie | 540 | 1,620 | | 7. | Conveyor (belt) No. 3 | 1 | 2.4 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 4,020 | 4,020 | | 3. | Tunnel sump | 2 | $2.3 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lining, 267.4 watt motor | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 690 | 1,380 | | 9. | Elevator
No. 1 | 1 | 2.4 kg/s | 0.83 | Chem. Engr. 3-24-69 | 2,360 | 2,360 | | 10. | Bin | 1 | Capacity 13.5 \mathfrak{m}^3 , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 4,090 | 4,390 | | 11. | Car shaker | 1 | Railroad trackside
vibrator | | | 3,330 | 3,330 | | 12. | Dust collecting system No. 1 | 1 | .10 m³/s inertial separator, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 540 | 540 | | 13. | Dust collecting system No. 2 | 1 | .29 m³/s inertial separator, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69 | 1.049 | 1,041 | | 14. | Bay filter
system | 1 | .76 m³/s, automatic fabric dust collectors, bag support, shaker system, isolation damper, motor, drive, dust hopper, fan and motor | 0.53 | Chem. Engr. 3-24-69 | 2,470 | 2,477 | | | SUBTOTAL | | | | | | 31.39 | | | | | | | • | | | 48 ### TABLE A-3 (Continued) AREA 2 - FEED PREPARATION | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Bin discharge
feeder | 1 | .7 kg/s, carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 310 | 310 | | 2. | Weigh feeder | 1 | .7 kg/s, carbon steel | 0.65 | Chem. Engr. 3-24-69
Guthrie | 3,750 | 3,750 | | 3. | Gyratory
crusher | 1 | .7 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 2,190 | 2,190 | | 4. | Elevator
No. 2 | 1 | .7 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 1,100 | 1,100 | | 5. | Wet ball | 1 | 6.4 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 48,200 | 48,200 | | | mill | 1 | 68,260 W motor | 1.07 | Fund. of Cost Engr.
1964 | 3,260 | 3,260 | | 6. | Slurry feed
tank | 1 | Capacity 13.1 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 5,200 | 5,200 | | | Lining | 1 | 5.53 x 10 ⁻³ m neoprene | | | 4,590 | 4,590 | | 7. | Agitator,
slurry
feed
tank | 1 | 1300 W, neoprene coated | 0.50
0.46 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,960 | 2,960 | | 3. | Pumps, slurry
feed tank | 2 | $6.7 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 1,390 | 3,730 | | 9. | Dust
collecting
system | 1 | .36 m ² /s, inertial separator, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 1,240 | 1,240 | | 10. | Hoist | 1 | 1,568 kg electric | 0.81 | Popper, H. | 10,200 | 10,200 | | 11. | Bag filter
system | * 1 | .76 m ¹ /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,470 | 2,470 | | | SUBTOTAL | | | | | | 89.250 | | | | | | | | | 07,13c | 49 ### TABLE A-3 (Continued) AREA 3 - PARTICULATE SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|---|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Tank,
particulate
scrubber,
effluent
hold | 1 | Capacity 151.7 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 27,300 | 27,800 | | | Lining | 1 | 5.53 x 10 ⁻³ m neoprene | | | 20,500 | 20,500 | | 2. | Agitator,
effluent
hold tank | 1 | 6,500 W, neoprene coated | 0.26
0.50 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69 | 5,830 | 5,830 | | | | | | | Guthrie | | | | 3. | Pumps,
recycle
slurry | 2 | .4 m³/s, carbon steel,
neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 21,950 | 43,900 | | 4. | Venturi
scrubber | 1 | 84.1 m³/s, carbon steel, neoprene lined | 0.60 | Universal Oil
Products
 157,400 | 157,400 | | 5. | Venturi
sump | 1 | Carbon steel, neoprene lining | 0.68 | Chem. Engr. 3-24-69
Guthrie | 42,650 | 42,650 | | 6. | Soot
blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 7. | Bleed pump | 2 | $1.6 \times 10^{-3} \mathrm{m}^3/\mathrm{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
ts resulting in
of motor and impeller | 1,860 | 3,720 | | | SUBTOTAL | | | | | | | | | | | | | • | | 327,050 | ### TABLE A-3 (Continued) AREA 4 - SO₂ SCRUBBING | | Icem | <u> Мо.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |-----|---|-------------|---|------------------------------|---|--------------------------------|--------------------------| | 1. | Spray tower scrubber | 1 | Gas flow 84.1 m ³ /s, carbon steel, neoprene | | Western Precipitation
Div. Joy Mfr. Co.ª | 225,400 | 225,400 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene
lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 41,970 | 41,970 | | 3. | Tank
absorber
effluent
hold | 1 | Capacity 462.6 m³, carbon steel, field erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 35,960 | 35,960 | | | Lining | 1 | 5.53 x 10 ⁻³ m neoprene | | | 30,680 | 30,680 | | 4. | Agitator,
SO ₂
absorber
hold tank | 1 | 19501 W, neoprene
coated | 0.50 | Chem. Engr. 3-24-69
Guthrie | 12,090 | 12,090 | | 5. | Pumps, SO₂
absorber
recycle
slurry | 3 | .54 m³/s, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
if motor and impeller | 31,030 | 93,090 | | 6. | Pumps,
makeup
wacer | 1 | 9.7 \times 10 ⁻⁴ m ³ /s, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
if motor and impeller | 1,440 | 1,440 | | 7. | Soot
blowers | 5 | | 1.00 | TVA | 5,050 | 25,255 | | 8. | Demister | 1 | Carbon steel, neoprene
lined | | | 22,540 | 22,540 | | 9. | Pump, bleed | 2 | 5.8×10^{-4} m $^3/s$, carbon steel, neoprene lined | quirement | n gpm and head re-
s resulting in
f motor and impeller | 1,900 | 3,900 | | 10. | Tank,
demister wash | 1 | Capacity 1.65 m³, carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,340 | 1,340 | | 11. | Pump,
demister wash | 2 | $1.2 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | n gpm and head re-
s resulting in
f motor and impeller | 1,490 | 2,930 | | | SUBTOTAL | • | | | | | | | | | | | | | | 496,540 | ^aIndicates source of spray tower cost ### TABLE A-3 (Continued) AREA 5 - REHEAT | | Item | <u>No .</u> | Description | Size-Cost
Scale
- Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|--|-------------|--|---|--|--------------------------------|---------------------------| | 1. | Sceam
reheater | 1 | 3.5×10^6 W rating 127.5 m ² surface area | 0.80 | Chem. Engr. 3-24-69
Guthrie | 76,400 | 76,400 | | 2. | Soot
blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | | SUBTOTAL | | | | | | 101,650 | | | | | AREA 6 - 0 | GAS HANDLING | | | | | | Item | <u> Ио.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Fan | 1 | $1.37 \times 10^5 \text{ W motor drive}$ | 0.68 | Chem. Engr. 3-24-69 | 67,240 | 67,240 | | | Icem | No. | Description | Size-Cost
Scale
Factor | Factor
Source | 3ase
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Clarifier | 1 | 4.8 x 10 ⁻³ m ³ /s | | PEDCO (PE-146 | 153,390 | 153,390 | | 2. | Pumps, pond
feed | 2 | $1.2 \times 10^{-1} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremer | on gpm and head re-
nts resulting in
of motor and impeller | 1,490 | 2,980 | | 3. | Pump,
clarifier
water
recycle | 2 | $3.6 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 3,350 | 6,700 | | 4. | Pumps, | | | | | | | | | particulate
pond water
recycle | 2 | $2.8 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 2,390 | 4,780 | | 5. | particulate
pond water | 2 | | quiremer
changes
size
Depends
quiremer | its resulting in | 2,390 | 4,780
2,980 | | 5. | particulate
pond water
recycle
Pumps, SO ₂
pond water | | steel, neoprene lined $^{\circ}$ 5.0 x 10^{-4} m 3 /s, carbon | quiremer
changes
size
Depends
quiremer
changes | of motor and impeller on gpm and head re- nts resulting in | | | #### TABLE A-3 (Continued) #### AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----|------------------------------------|-----|-------------|------------------------------|------------------|--------------------------------|--------------------------| | l. | Payloader | | | | *** | 31,280 | 31,280 | | 2. | Plant
vehicles | | | | | | 12,630 | | 3. | Maint. & instrument shop-equipment | | | , | | 33,300 | 33,300 | | 4. | Service
building-
equipment | | | | | 44,150 | 44,150 | | 5. | Stores-
equipment | | , | | | 13,370 | 13,370 | | | SUBTOTAL | | | | | | 134,730 | #### AREA 10 - PARTICLE RECIRCULATION | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----|---|-----|--|------------------------------|---|--------------------------------|--------------------------| | 1. | Wet ball mill | 1 | 2.8 x 10 ⁻⁴ m ³ /s | 0.65 | McGlamery | 23,730 | 23,780 | | 2. | Pump,
particle
recirculation | 2 | 2.8 x 10 ⁻⁴ m ³ /s
molded polypropylane | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 430 | 960 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity 1.0 m³, carbon steel, neoprene lined | 0.68 | McGlamery | 980 | 981 | | | SUBTOTAL | | | | | | 31,72 | ## TABLE A-4 CASE 4, FLASH FURNACE, NSPS* WORK SHEET FOR PROCESS EQUIPMENT COSTS #### AREA 1 - MATERIALS HANDLING | | Item | <u>No .</u> | Description | - Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|--|-------------|---|--------------------------------|---|--------------------------------|---------------------------| | 1. | Unloading
hopper No. 1 | 1 | Capacity .20 m³, carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 440 | 440 | | 2. | Limestone
feeder No. 1
(vibrating) | 1 | 3.7 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 890 | 890 | | 3. | Conveyor
(belt) No. l | 1 | 3.7 kg/s | 0.81
0.65 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 420 | 420 | | 4. | Conveyor (belt) No. 2 | 1 | 3.7 kg/s | 0.81
0.65 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 2,000 | 2,000 | | 5. | Hoppers
under pile | 3 | Capacity 0.14 m ³ , carbon steel | 0.63 | Chem. Engr. 3-24-69
Guthrie | 370 | 1,110 | | 6. | Limestone
feeder No. 2
(vibrating) | 3 | 1.3 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 470 | 1,410 | | 7. | Conveyor
(belt) No. 3 | 1 | 1.3 kg/s | 0.65
0.81 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 3,330 | 3,330 | | 8. | Tunnel
sump pump | 2 | 2.0 m 10 ⁻⁴ m ² /s carbon
steel, neoprene lining,
118.4 watt motor | quirements | gpm and head re-
resulting in
motor and impeller | 540 | 1,380 | | 9. | Elevator | 1 | 1.8 kg/s | 0.83 | Chem. Engr. 3-24-69 | 1,360 | 1,360 | | 10. | Bin | 1 | Capacity 9.9 m ² , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 3,290 | 3,290 | | 11. | Car shaker | 1 | Railroad trackside vibrator | | | 9,330 | 8,330 | | 12. | Dust
collecting
system No. 1 | 1 | 0.08 m ³ /s inertial separator, cyclone, hoppers, fan, and drive | 08.0 | Chem. Engr. 3-24-69
Guthrie | 220 | 442 | | 13. | Dust
collecting
system No. 2 | 1 | 0.21 m³/s inertial separator, cyclone hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69 | 900 | 300 | | 14. | Bag filter
system | 1 | 0.55 m ³ /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 1,780 | 1,990 | | | SUBTOŢAL | | | | | | | *New Source Performance Standards, 650 ppm SO_2 in scrubber effluent. 27,330 ### TABLE A-4 (Continued) AREA 2 - FEED PREPARATION | | Item | <u>No.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|------------|--|------------------------------|---
--------------------------------|---------------------------| | 1. | Bin discharge | 1 | 0.5 kg/s, carbon
steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 250 | 260 | | 2. | Weigh feeder | 1 | 0.5 kg/s, carbon
steel | 0.65 | Chem. Engr. 3-24-69
Guthrie | 3,010 | 3,010 | | 3. | Gyratory
crusher | 1 | 0.5 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 1,460 | 1,460 | | 4. | Elevator
No. 2 | 1 | 0.5 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 880 | 880 | | 5. | Wer ball | 1 | 4.7 kg/s | 0.65 | Chem. Engr. 3-24-69 | 39,440 | 39,440 | | | mill | 1 | 49703 W motor | 1.07 | Guthrie
Fund. of Cost Engr.
1964 | 2,320 | 2,320 | | 6. | Slurry feed | 1 | Capacity 13.2m ² , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 4,190 | 4,190 | | | Lining | 1 | 4.03 x 10 ⁻³ m neoprene | | | 3,680 | 3,68∩ | | 7. | Agitator,
slurry
feed
tank | 1 | 947 W, neoprene coated | 0.50
0.46 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,520 | 2,520 | | 8. | Pumps, slurry
feed tank | 2 | $4.4 \times 10^{-4} \text{m}^2/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 1,520 | 3,040 | | 9. | Dust
collecting
system | 1 | 0.26 m ³ /s, inertial separator, cyclone hoppers, fan and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 950 | 950 | | 10. | Hoist | 1 | 1142 kg electric | 0.81 | Popper, H. | 7,390 | 7,890 | | 11. | Bag filter
system | 1 | 0.55 m ³ /s, automatic
fabric dust collectors
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 1,990 | 1,980 | | | SUBTOTAL | | | | | | 71,620 | | | | | | | | | 11,52 | ### TABLE A-4 (Continued) AREA 3 - PARTICULATE SCRUBBING | particulate scrubber, affluent hold Lining 1 4.03 x 10 ⁻³ m neoprene 16,360 16,3 2. Agitator, 1 4734 W, neoprene 0.26 Fund. of Cost Engr. 5,330 5,3 1964 0.50 Chem. Engr. 3-24-69 Guthrie 3. Pumps, 2 2 m³/s, carbon steel, neoprene lined changes of motor and impeller size 4. Venturi 1 49.5 m³/s, carbon steel, neoprene lined Products 5. Venturi 1 Carbon steel, neoprene 0.68 Chem. Engr. 3-24-69 34,350 34,35 mp lining 1.00 TVA 5,050 25,25 mp lowers | | Item | No. | Description | Size-Cost
Scale
- Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |--|-----|--------------------------------------|-----|---|--------------------------------|-----------------------------|--------------------------------|--------------------------| | 2. Agitator, effluent hold tank 2. Agitator, effluent hold tank 2. Agitator, effluent hold tank 3. Pumps, recycle slurry 3. Pumps, recycle slurry 4. Venturi land head resulting in changes of motor and impeller size 4. Venturi neoprene lined 5. Venturi land head resulting in changes of motor and impeller sump 6. Soot blowers 7. Bleed pump 2. Agitator, 1 4734 W, neoprene coated neoprene lined 6. Soot blowers 1. 4734 W, neoprene neoprene neoprene neoprene neoprene lined 8. Fund. of Cost Engr. 5,380 5,380 8. Oct Depends on gpm and head resulting in changes of motor and impeller 8. Oct Depends on gpm and head resulting in changes of motor and impeller 9. Oct Depends on gpm and head resulting in changes of motor and impeller | 1. | particulate
scrubber,
affluent | 1 | | 0.68 | | 22,430 | 22,43^ | | effluent hold tank Coated 0.50 Chem. Engr. 3-24-69 Guthrie 3. Pumps, recycle neoprene lined Venturi scrubber 1 49.5 m³/s, carbon steel, neoprene lined Carbon steel, neoprene 1 2 1.2 x 10 ⁻³ m²/s carbon | | Lining | 1 | 4.03×10^{-3} m neoprene | | | 16,360 | 16,360 | | recycle slurry neoprene lined quirements resulting in changes of motor and impeller size 4. Venturi 1 49.5 m³/s, carbon steel, neoprene lined Products 5. Venturi 1 Carbon steel, neoprene 0.68 Chem. Engr. 3-24-69 34,350 34,350 guthrie 6. Soot 5 1.00 TVA 5,050 25,25 blowers 7. Bleed 2 1.2 x 10 ⁻³ m²/s carbon pump steel, neoprene lined quirements resulting in changes of motor and impeller | 2. | effluent | 1 | | | 1964
Chem. Engr. 3-24-69 | 5,380 | 5,38€ | | scrubber neoprene lined Products 5 Venturi 1 Carbon steel, neoprene 0.68 Chem. Engr. 3-24-69 34,350 34,350 sump lining Guthrie 6. Soot 5 1.00 TVA 5,050 25,25 blowers 7. Bleed 2 1.2 x 10 ⁻³ m²/s carbon Depends on gpm and head repump steel, neoprene lined quirements resulting in changes of motor and impeller | 3. | recycle | 2 | | quiremen
changes | ts resulting in | 13,510 | 27,020 | | sump lining Guthrie 6. Soot 5 1.00 TVA 5,050 25,23 blowers 7. Bleed 2 1.2 x 10 ⁻³ m²/s carbon Depends on gpm and head re- 1,520 3,04 pump steel, neoprene lined quirements resulting in changes of motor and impeller | 4. | | 1 . | 49.5 m³/s, carbon steel, neoprene lined | 0.60 | | 114,520 | 114,520 | | blowers 7. Bleed 2 1.2 x 10 ⁻³ m ² /s carbon Depends on gpm and head re- 1,520 3,94 pump steel, neoprene lined quirements resulting in changes of motor and impeller | 5 . | | 1 | | 0.68 | | 34,350 | 34,350 | | pump steel, neoprene lined quirements resulting in changes of motor and impeller | 6. | | 5 | | 1.00 | TVA | 5,050 | . 25,250 | | | 7. | | 2 | | quiremen
changes | s resulting in | 1,520 | 3,941 | | SUBTOTAL | | SUBTOTAL | | | | - | | 2-3.35 | ### TABLE A-4 (Continued) AREA 4 - SO₂ SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|---|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Spray tower scrubber | 1 | Gas flow 49.5 m ³ /s, carbon stael, neoprene | | Western Precipitation
Div. Joy Mfr. Co. | 155,550 | 155,500 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 33,810 | 33,310 | | 3. | Tank
absorber
effluent
hold | 1 | Capacity 336.9 m ³ , carbon steel, field erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 28,990 | 28,990 | | | Lining | 1 | 4.03×10^{-3} m neoprene | | | 24,590 | 24,590 | | 4. | Agitator,
SO ₂
absorber
hold tank | 1 | 14201 W, neoprene
coated | 0.50 | Chem. Engr. 3-24-69
Guthrie | 10,320 | 10,320 | | 5. | Pumps, SO ₂ absorber recycle slurry | 3 | .39 m ² /s, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
if motor and impeller | 24,720 | 74,160 | | ó. | Pumps,
makeup
water | 1 | 7.0×10^{-4} m $^3/s$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,150 | 1,150 | | 7. | Soot
blowers | 5 | | 1.00 | TVA | 5,050 | 25,250 | | 3. | Demister | 1 | Carbon steel, neoprene
lined | | | 15,550 | 13,550 | | 9. | Pump,
bleed | 2 | $4.3 \times 10^{-4} \text{ m}^2/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,540 | 3,080 | | 10. | Tank,
demister wash | 1 | Capacity 1.20 m ² , carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,080 | 1,080 | | 11. | Pump,
demister wash
Wash | 2 | $3.3 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirement | on gpm and head re-
is resulting in
of motor and impeller | 1,130 | 2,300 | | | SUBTOTAL | | | | | | | | | | | | | | | 375,730 | a Indicates source of spray tower cost ### TABLE A-4 (Continued) AREA 5 - REHEAT | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----------------|---|----------------------|---|---|---|---|--| | 1. | Steam
reheater | 1 | 2.6 x 10 ⁵ W rating
92.8 m ² surface area | 0.80 | Chem. Engr. 3-24-69
Guthrie | 60,240 | 60,240 | | 2. | Soot
blowers | 5 | | 1.00 | TVA | 4,290 | 21,450 | | | SUBTOTAL | | | | | | 81,690 | | | | | AREA 6 - 0 | GAS HANDLING | | | | | | Item | <u> </u> | Description | Size-Cost
Scale
Factor | Factor
Source |
Base
Cost
Each
(1977) | Total
Mid-197
Cost | | 1. | Fan | 1 | 8.09×10^5 W motor drive | 0.68 | Chem. Engr. 3-24-69
Guthrie | 48,690 | 48,690 | | | | | <u>AREA 7 - SO</u> | OLIDS DISPOSA | <u>L</u> | | | | | Tram | Vo. | | Size-Cost
Scale | Factor | Base
Cost
Each | Total
Mid-197 | | | Item Clarifier | <u>чо.</u>
1 | Description | Size-Cost
Scale
Factor | Factor
Source | Cost
Each
(1977) | Mid-197
Cost | | | Item Clarifier Pumps, pond feed | <u>Мо.</u>
1
2 | | Size-Cost
Scale
Factor

Depends (
quirement | Factor | Cost
Each | Mid-197 | | 2. | Clarifier Pumps, pond | 1 | Description 3.5 x 10 ⁻³ m ³ /s 3.3 x 10 ⁻⁴ m ² /s, carbon steel, neoprene | Size-Cost Scale Factor Depends (quirement changes (size Depends (quirement) | Factor Source PEDCO (PE-146) on gpm and head re- ts resulting in | Cost
Each
(1977)
122,970 | Mid-197
Cost
122,970 | | 2. | Clarifier Pumps, pond feed . Pump, clarifier water | 1 2 | Description 3.5 x 10 ⁻³ m ³ /s 3.3 x 10 ⁻⁴ m ² /s, carbon steel, neoprene lined 2.3 x 10 ⁻³ m ³ /s, carbon steel, neoprene | Size-Cost Scale Factor Depends quirement changes size Depends quirement changes size Depends quirement changes quirement | Factor Source PEDCO (PE-146) on gpm and head rets resulting in of motor and impeller on gpm and head rets resulting in | Cost
Each
(1977)
122,970
1,150 | Mid-197
Cost
122,970
2,30' | | 1.
2.
3. | Clarifier Pumps, pond feed Pump, clarifier water recycle Pumps, particulate pond water | 2 | Description 3.5 x 10 ⁻³ m ³ /s 3.3 x 10 ⁻⁴ m ² /s, carbon steel, neoprene lined 2.3 x 10 ⁻³ m ³ /s, carbon steel, neoprene lined 2.0 x 10 ⁻³ m ³ /s, carbon | Size-Cost Scale Factor Depends (quirement changes (size Depends (quirement changes (size Depends (quirement changes (size Depends (quirement changes (quirement changes (quirement changes (quirement) | Factor Source PEDCO (PE-146) on gpm and head re- ts resulting in of motor and impeller on gpm and head re- ts resulting in of motor and impeller on gpm and head re- ts resulting in of motor and impeller on gpm and head re- ts resulting in | Cost
Each
(1977)
122,970
1,150 | Mid-197
Cost
122,970
2,304
4,880 | | 3. 4. | Clarifier Pumps, pond feed Pump, clarifier water recycle Pumps, particulate pond water recycle Pumps, SO2 pond water | 2 2 | Description 3.5 x 10 ⁻¹ m ³ /s, carbon steel, neoprene lined 2.3 x 10 ⁻³ m ³ /s, carbon steel, neoprene lined 2.0 x 10 ⁻³ m ³ /s, carbon steel, neoprene lined 3.7 x 10 ⁻⁴ m ³ /s, carbon | Size-Cost Scale Factor Depends (quirement changes (size | Factor Source PEDCO. (PE-146) on gpm and head rets resulting in of motor and impeller on gpm and head rets resulting in of motor and impeller on gpm and head rets resulting in of motor and impeller on gpm and head rets resulting in of motor and impeller on gpm and head rets resulting in of motor and impeller | Cost
Each
(1977)
122,970
1,150
2,440 | Mid-197
Cost
122,970
2,304
4,880 | ### TABLE A-4 (Continued) AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | <u>No .</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-197
Cost | |----|------------------------------------|-------------|-------------|------------------------------|------------------|--------------------------------|--------------------------| | 1. | Payloader | | | | | 31,280 | 31,280 | | 2. | Plant
vehicles | | | | | | 12,630 | | 3. | Maint. & instrument shop-equipment | | | • | | 33,300 | 33,300 | | 4. | Service
building-
equipment | | | | | 44,150 | 44,150 | | 5. | Stores-
equipment | | , | | | 13,370 | 13,370 | | | SUBTOTAL | | | | | | 134,730 | #### AREA 10 - PARTICLE RECIRCULATION | | | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-191
Cost | |----|---|-----|--|------------------------------|---|--------------------------------|--------------------------| | 1. | Wet ball mill | 1 | 2.0 x 10 m3/s | 0.65 | McGlamery | 23,130 | 23,130 | | 2. | Pump,
particle
recirculation | 2 | 2.0 x 10 ⁻⁴ m ³ /s, molded polypropylane | quiremen | on gpm and head re-
ts resulting in
of motor and impeller | 380 | 767 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity .70 m³, carbon steel, neoprene lined | 0.68 | McGlamery | 770 | 7.7 | | | SUBTOTAL | | | | | | 24,66 | ## TABLE A-5 CASE 5, ELECTRIC FURNACE, NSPS* WORK SHEET FOR PROCESS EQUIPMENT COSTS AREA 1 - MATERIALS HANDLING | | Item | No. | Description | Size-Cost
- Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|--|-----|---|--------------------------------|--|--------------------------------|---------------------------| | 1. | Unloading
hopper No. 1 | 1 | Capacity 0.28 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 260 | 260 | | 2. | Limestone
feeder No. l
(vibrating) | 1 | 5.2 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 1,090 | 1,090 | | 3. | Conveyor
(belt) No. 1 | 1 | 5.2 kg/s | 0.81 | Fund. of Cost Engr.
1964 | 560 | 560 | | | | | | 0.65 | Chem. Engr. 3-24-69
Guthrie | | | | 4. | Conveyor (belt) No. 2 | 1 | 5.2 kg/s | 0.81 | Fund. of Cost Engr.
1964 | 2,650 | 2,650 | | | | | | 0.65 | Chem. Engr. 3-24-69
Guthrie | | | | 5. | Hoppers
under pile | 3 | Capacity 0.19 m ³ , carbon sceel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 450 | 1,350 | | ó. | Limestone
feeder No. 2
(vibrating) | 3 | 2.5 kg/s | 0.58 | Chem. Engr. 3-24-69 | 570 | 1,710 | | 7. | Conveyor (belt) No. 3 | 1 | 2.5 kg/s ′ | 0.65
0.81 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 4,180 | 4,130 | | 8. | Tunnel
sump pump | 2 | 2.7 x 10 ⁻⁴ m ³ /s, carbon steel, neoprene lining, 241.0 watt motor | quireme | on gpm and head re-
nts resulting in
of motor and impeller | 450 | 900 | | 9. | Elevator | 1 | 2.5 kg/s | 0.83 | Chem. Engr. 3-24-69 | 2,490 | 2,490 | | 10. | Bin | 1 | Capacity 14 m ² , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 5.070 | 5,070 | | 11. | Car shaker | 1 | Railroad trackside vibrator | | | 6,920 | 6,920 | | 12. | Dust
collecting
system No. 1 | 1 | 0.10 m ³ /s, inertial separators, cyclone, hoppers, fan and drive | 0.30 | Chem. Engr. 3-24-69 | 540 | 540 | | 13. | Dust
collecting
system No. 2 | 1 | 0.29 m³/s, inertial
separators, cyclone,
hoppers, fan and drive | 0.80 | Chem. Engr. 3-24-69 | 440 | 440 | | 14. | Bag filter
system | 1 | 0.78 m ³ /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,530 | 2,530 | | | SUBTOTAL | | | | al . | | | *New Source Performance Standards, 650 ppm SO_2 in scrubber effluent, acid plant tail gas not treated. \$30,590 ### TABLE A-5 (Continued) AREA 2 - FEED PREPARATION | - | Icem | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|-----|---|------------------------------|--|--------------------------------|---------------------------| | 1. | Bin discharge
feeder | 1 | 0.7 kg/s, carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 300 | 300 | | 2. | Weigh feeder | 1 | 0.7 kg/s, carbon steel | 0.65 | Chem. Engr. 3-24-69
Guthrie | 3,630 | 3,630 | | 3. | Gyratory
crusher | 1 | 0.7 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 2,070 | 2,070 | | 4. | Elevator
No. 2 | 1 | 0.7 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 1,060 | 1,060 | | 5. | Wet ball | 1 | 0.62 kg/s | 0.65 | Chem. Engr. 3-24-69 | 49,130 | 49,130 | | | mill | 1 | 71,333 W motor | 1.07 | Guthrie
Fund. of Cost Engr.
1964 | 3,420 | 3,420 | | 6. | Slurry feed
tank | 1 | Capacity 17.4 m ³ , carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 5,150 | 5,150 | | | Lining | 1 | 0.53 x 10 ⁻² m neoprene | | | 4,540 | 4,540 | | 7. | Agitator,
slurry
feed
tank | 1 | 1240 W, neoprene coated | 0.50
0.46 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,890 | 2,890 | | 8. | Pumps, slurry | 2 | 0.6 x 10 ⁻³ m ³ /s, carbon sceel, neoprene lined | quireme | on gpm and head re-
nts resulting in
of motor and impeller | 1,260 | 2,520 | | 9. | Dust
collecting
system | 1 | 0.39 m ³ /s, inertial separator, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 1,330 | 1,330 | | 10. | Hoist | 1 | 1496 kg electric | 0.81 | Popper, H. | 9,830 | 9,830 | | 11. | Bag filter
system | 1 | 0.78 m ³ /s, automatic
fabric dust collectors,
bag support, shaker sys-
tem, isolation damper,
motor, drive, dust hopper,
fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,530 | 2,530 | | | SUBTOTAL | | | | 1 | | 58,400 | ### TABLE A-5 (Continued) AREA 3 - PARTICULATE SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|--|-----|--
------------------------------|--|--------------------------------|---------------------------| | 1. | Tank particulate scrubber, effluent hold | 1 | Capacity 165.8 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 29,560 | 29,560 | | | Lining | 1 | 0.53×10^{-2} m neoprene | | | 21,700 | 21,700 | | 2. | Agitator,
effluent | 1 | 6,203 W, neoprene
coated | 0.26 | Fund. of Cost Engr.
1964 | 5,760 | 5,760 | | | hold tank | | coated | 0.50 | Chem. Engr. 3-24-69
Guthrie | | | | 3. | Pumps,
recycle
slurry | 2 | .22 m³/s, carbon steel, neoprene lined | quireme | on gpm and head re-
nts resulting in
of motor and impeller | 10,970 | 21,940 | | 4. | Venturi
scrubber | 1 | 6.8 m³/s, carbon steel, neoprene lined | 0.60 | Universal Oil
Products | 75,130 | 75,130 | | 5. | Venturi
sump | 1 | Carbon steel, neoprene lining | 0.68 | Chem. Engr. 3-24-69
Guthrie | 69,370 | 69,370 | | 6. | Soot blowers | 5 | | 1.00 | TVA | 1,240 | 6,200 | | 7. | 3leed pump | 2 | 1.3 x 10 ⁻¹ m ² /s, carbon steel, neoprene lined | quireme | on gpm and head re-
nts resulting in
of motor and impeller | 1,260 | 2,520 | | | SUBTOTAL | | | | | | | | | | | | | | | 157,050 | ### TABLE A-5 (Continued) AREA 4 - SO₂ SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|---|-----|--|------------------------------|--|--------------------------------|---------------------------| | 1. | Spray tower scrubber | 1 | Gas flow 24.5 m ³ /s, carbon steel, neoprene | | Western Precipitator
Div., Joy Mfg. Co. ^a | 82,620 | 82,620 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene
lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 69,370 | 69,370 | | 3. | Tank,
absorber
effluent
hold | 1 | Capacity 588.6 m³,
carbon steel, field
erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 42,380 | 42,380 | | | Lining | 1 | 0.53×10^{-2} m neoprene | | | 21,690 | 21,690 | | 4. | Agitator,
SO ₂
absorber
hold tank | 1 | 24811 W, neoprene
coated | 0.50 | Chem. Engr. 3-24-69
Guthrie | 12,670 | 12,670 | | 5. | Pumps, SO ₂
absorber
recycle | 3 | 0.38 m ² /s, carbon steel, neoprene lined | quiremer | on gpm and head re-
nts resulting in
of motor and impeller | 16,980 | 16,980 | | б. | Pumps,
makeup
water | 1 | $1.0 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremer | on gpm and head re-
nts resulting in
of motor and impeller | 940 | 940 | | 7. | Soot
blowers | 5 | , | 1.00 | TVA | 1,240 | 6,200 | | 8. | Demister | 1 | Carbon steel, neoprene lined | | | 5,700 | 5,700 | | 9. | Pump, bleed | 2 | $0.6 \times 10^{-7} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 1,250 | 2,500 | | 10. | Tank,
demister wash | 1 | Capacity 1.57 m³, carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,290 | 1,290 | | 11. | Pump,
demister wash | 2 | $1.1 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 950 | 1,900 | | | SUBTOTAL | | | | / | | 264,240 | ^aIndicates source of spray tower cost ### TABLE A-5 (Continued) AREA 5 - REHEAT | | Item | <u>No .</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|--|-------------|--|------------------------------|--|--------------------------------|---------------------------| | 1. | Steam
reheater | 1 | 1.66 x 10 ⁵ W rating 61.0 m ² surface area | 0.80 | Chem. Engr. 3-24-69 | 47,340 | 47,340 | | 2. | Soot | 5 | | 1.00 | TVA | 1,240 | 6,200 | | | SUBTOTAL | | | | | | 53,540 | | | | | AREA 6 - GA | S HANDLING | | | | | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Fan | 1 | $3.41 \times 10^5 \text{ W drive}$ | 0.68 | Chem. Engr. 3-24-69
Guthrie | 113,590 | 113,590 | | | | | · · | | | | | | | | | AREA 7 - SOL | IDS DISPOSAL | | | | | | Item | <u>No.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Clarifier | 1 | $4.8 \times 10^3 \text{ m/s}$ | 0.68 | PEDCO (PE-146) | 158,400 | 158,400 | | 2. | Pumps, pond
feed | 2 | $6.0 \times 10^{-7} \text{ m}^2/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 2,960 | 5,920 | | 3. | Pump,
clarifier
water
recycle | 2 | $0.4 \times 10^{-2} \mathrm{m}^3/\mathrm{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 2,180 | 4,360 | | 4. | Pumps,
particulate
pond water
recycle | 2 | $0.3 \times 10^{-2} \text{ m}^2/\text{s}$, carbon steel, neoprene lined | quiremen | on gpm and head re-
nts resulting in
of motor and impeller | 2,500 | 5,000 | | 5. | Pumps, SO ₂ pond water recycle | 2 | 0.5 x 10 ⁻³ m ² /s, carbon steel, neoprene lined | | | 630 | 1,360 | | | SUBTOTAL | | | | | | 175,040 | ### TABLE A-5 (Continued) AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |------------|------------------------------------|-----|-------------|------------------------------|------------------|--------------------------------|---------------------------| | 1. | Payloader | | | | | 31,300 | 31,300 | | 2. | Plant
vehicles | | | | | | 12,630 | | 3. | Maint. & instrument shop-equipment | | | • | | 33,320 | 33,320 | | 4. | Service
building-
equipment | | | | | 44,170 | 44,170 | | 5 . | Stores-
equipment | | | | | 13,380 | 13,380 | | | SUBTOTAL | | | | | | | | | | | , | | | | 134,800 | #### AREA 10 - PARTICLE RECIRCULATION | | Item | <u> Ио.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|---|-------------|---|------------------------------|--|--------------------------------|---------------------------| | 1. | Wet ball mill | 1 | $2.7 \times 10^{-4} \text{ m}^2/\text{s}$ | 0.65 | McGlamery | 27,900 | 27,900 | | 2. | Pump,
particle
recirculation | 2 | 2.7 x 10 ⁻⁴ m ³ /s,
molded polypropylene | quireme | on gpm and head re-
nts resulting in
of motor and impeller | 300 | 600 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity 0.9 m ³ , carbon steel, neoprene lined | 0.68 | McGlamery | 920 | 920 | | | SUBTOTAL | | | | | | 7 0 7 7 7 7 | # TABLE A-6 CASE 6, FLASH FURNACE, NSPS* WORK SHEET FOR PROCESS EQUIPMENT COSTS AREA 1 - MATERIALS HANDLING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each | Total
Mid-1977 | |-----|--|-----|--|------------------------------|--|----------------------|--------------------| | 1. | Unloading | 1 | Capacity .22 m³, carbon | 0.68 | Chem. Engr. 3-24-69 | <u>(1977)</u>
470 | <u>Cost</u>
470 | | | hopper No. 1 | | steel | 3.33 | Guthrie | 4,0 | 470 | | 2. | Limestone
feeder No. l
(vibrating) | 1 | 4.2 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 960 | 960 | | 3. | Conveyor
(belt) No. 1 | 1 | 4.2 kg/s | 0.81 | Fund. of Cost Engr.
1964 | 470 | 470 | | | | | | 0.65 | Chem. Engr. 3-24-69
Guthrie | | | | 4. | Conveyor
(belt) No. 2 | 1 | 4.2 kg/s | 0.81 | Fund. of Cost Engr.
1964 | 2,230 | 2,230 | | | (====, | | | 0.65 | Chem. Engr. 3-24-69
Guthrie | | | | 5. | Hoppers
under pile | 3 | Capacity 0.15 m³, cárbon steel | 0.63 | Chem. Engr. 3-24-69
Guthrie | 400 | - 1,200 | | 5. | Limestone
feeder No. 2
(vibrating) | 3 | 2.0 kg/s | 0.58 | Chem. Engr. 3-24-69
Guthrie | 500 | 1,500 | | 7. | Conveyor
(belt) No. e | 1 | 2.0 kg/s | 0.65 | Chem. Engr. 3-24-69 | 3,600 | 3,600 | | | (3611) 110. 6 | | | 0.81 | Guthrie
Fund. of Cost Engr.
1964 | | | | 3. | Tunnel
sump pump | 2 | 2.3 x 10 ⁻⁴ m ³ /s, carbon steel, neoprene lining, 311.0 watt motor | quirements | gpm and head re-
resulting in
motor and impeller | 460 | 920 | | 9 | Elevator
No. 1 | 1 | 2.0 kg/s | 0.83 | Chem. Engr. 3-24-69 | 2,060 | 2,060 | | 10. | Bin | 1 | Capacity 11.2 \mathfrak{m}^3 , carbon steel | 0.68 | Chem. Engr. 3-24-69 | 3,590 | 3,590 | | 11. | Car shaker | 1 | Railroad trackside vibrator | | | 3,330 | 8,330 | | 12. | Dust collecting system No. 1 | 1 | 0.09 m /s inertial separator, cyclone, hoppers, fan, and drive | 0.30 | Chem. Engr. 3-24-69
Guthrie | 480 | 430 | | 13. | Dust
collecting
system No. 2 | 1 | 0.24 m³/s inertial separator, cyclone, hoppers, fan, and drive | 0.80 | Chem. Engr. 3-24-69 | 330 | \$30 | | 14. | Bag filter
systèm | 1 | .626 m ³ /s, automatic fabric dust collectors, bag support, shaker system, isolation damper, motor, drive, dust hopper, fan and motor | 0.68 | Chem.
Engr. 3-24-69 | 2,160 | 2,160 | | | SUBTOTAL | | | | i | | 7 | | | | | | | | | 28,350 | ^{*}New Source Performance Standards, 650 ppm 30 in Scrubber effluent, acid plant tail gas not treated. ### TABLE A-6 (Continued) AREA 2 - FEED PREPARATION | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|-------------------------------------|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Bin discharge
feeder | 1 | 0.6 kg/s, carbon steel | 0.58 | Chem. Engr. 3-24-69
Guthrie | 270 | 2 70 | | 2 | Weigh feeder | 1 | 0.6 kg/s, carbon steel | 0.64 | Chem. Engr. 3-24-69
Guthrie | 3,280 | 3,280 | | 3. | Gyratory crusher | 1 | 0.6 kg/s | 1.20 | Chem. Engr. 3-24-69
Guthrie | 1,680 | 1,680 | | 4. | Elevator
No. 2 | 1 | 0.6 kg/s | 0.65 | Chem. Engr. 3-24-69
Guthrie | 950 | 950 | | 5. | Wet ball | 1 | 5.3 kg/s | 0.65 | Chem. Engr. 3-24-69 | 42,730 | 42,730 | | | mill | 1 | 56,400 W motor | 1.07 | Guthrie
Fund. of Cost Engr.
1964 | 2,560 | 2,660 | | 5. | Slurry feed
tank | 1 | Capacity 15.0 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 4,580 | 4,580 | | | Lining | 1 | 0.45×10^{-2} m neoprene | | | 4,000 | 4,000 | | 7. | Agitator,
slurry
feed
tank | 1 | 1075 W, neoprene coated | 0.50
0.46 | Chem. Engr. 3-24-69
Guthrie
Fund. of Cost Engr.
1964 | 2,590 | 2,690 | | 3. | Pumps, slurry
feed tank | 2 | 0.50 \times 10 ⁻³ m ³ /s, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 1,290 | 2,580 | | 9. | Dust
collecting
system | 1 | 0.30 m ³ /s, inertial separator, cyclone, hoppers, fan and drive | 0.80 | Chem. Engr. 3-24-69
Guthrie | 1,080 | 1,080 | | 10. | Hoist | 1 | 1296 kg electric | 0.81 | Popper, H. | 8,750 | 8,750 | | 11. | Bag filter
system | 1 | 0.63 m ³ /s, automatic fabric dust collectors, bag support, shaker system, isolation damper, motor, drive, dust hopper, fan and motor | 0.68 | Chem. Engr. 3-24-69 | 2,160 | 2,160 | | | SUBTOTAL | | | | | | 77,410 | ### TABLE A-6 (Continued) AREA 3 - PARTICULATE SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |------------|---|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Tank,
particulate
scrubber,
effluent
hold | 1 . | Capacity 125.4 m ³ , carbon steel | 0.68 | Chem. Engr. 3-24-69
Guthrie | 24,450 | 24,450 | | | Lining | 1 | 0.45×10^{-2} m neoprene | | •••• | 17,780 | 17,780 | | 2. | Agitator,
effluent
hold tank | 1 | 5373 W, neoprene coated | 0.26 | Fund. of Cost Engr.
1964
Chem. Engr. 3-24-69
Guthrie | 5,360 | 5,560 | | 3. | Pumps,
recycle
slurry | 2 | 0.3 m ³ /s, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 14,040 | 23,080 | | <u>4</u> . | Venturi
scrubber | 1 | 45.8 m ³ /s, carbon steel, neoprene lined | 0.60 | Universal Oil
Products | 109,350 | 109,350 | | 5. | Venturi
sump | 1 | Carbon steel, neoprene lining | 0.68 | Chem. Engr. 3-24-69
Guthrie | 35,200 | 85,200 | | 6. | Soot
blowers | 5 | | 1.00 | TVA | 2,280 | 11,400 | | 7. | 3leed
pump | 2 | $1.4 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 1,300 | 2,600 | | | SUBTOTAL | | | | • | | 284,420 | ### TABLE A-6 (Continued) AREA 4 - SO₂ SCRUBBING | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |-----|---|-----|--|------------------------------|---|--------------------------------|---------------------------| | 1. | Spray tower scrubber | 1 | Gas flow 45.8 m ³ /s, carbon steel, neoprene | | Western Precipitation
Div. Joy Mfr. Co. ^a | 147,400 | 147,400 | | 2. | Spray tower sump | 1 | Carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 83,850 | 83,850 | | 3. | Tank
absorber
effluent
hold | 1 | Capacity 382.4 m³, carbon steel, field erected | 0.68 | Chem. Engr. 3-24-69
Guthrie | 31,610 | 31,610 | | | Lining | 1 | 1.05×10^{-2} m neoprene | | | 26,720 | 26,720 | | 4. | Agitator,
SO ₂
absorber
hold tank | 1 | 37314 W, neoprene
coated | 0.50 | Chem. Engr. 3-24-69
Guchrie | 11,000 | 11,000 | | 5. | Pumps, SO ₂
absorber
recycle
slurry | 3 | 0.45 m ³ /s, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 21,080 | 63,240 | | 6. | Pumps,
makeup
water | 1 | $0.8 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 1,000 | 1,000 | | 7. | Soot
blowers | 5 | | 1.00 | TVA | 2,280 | 11,400 | | 3. | Demister | 1 | Carbon steel, neoprene lined | | | 13,900 | 13,900 | | 9. | Pump,
bleed | 2 | $0.5 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 1,280 | 2,540 | | 10. | Tank
Demister
Wash | 1 | Capacity 1.36 m ³ , carbon steel, neoprene lined | 0.68 | Chem. Engr. 3-24-69
Guthrie | 1,180 | 2,360 | | 11. | Pump,
Demister
Wash | 2 | 1.0 x 10 ⁻³ m ³ /s, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 9 30 | 1,950 | | | SUBTOTAL | | | | | | 396,980 | a Indicates source of spray tower cost ### TABLE A-6 (Continued) AREA 5 - REHEAT | | Item | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|---|-------------|--|------------------------------|--|--------------------------------|---------------------------| | 1. | Steam
reheater | 1 | 2.9 x 10 ⁵ W rating
105.4 m ² surface area | 0.80 | Chem. Engr. 3-24-69
Guthrie | 65,660 | 65,660 | | 2. | Soot
blowers | 5 | | 1.00 | TVA | 2,280 | 11,400 | | | SUBTOTAL | | | | | | 66,800 | | | | | AREA 6 - G | AS HANDLING | , | | | | | Item | <u> Мо.</u> | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Fan | 1 | 7.47×10^5 W motor drive | 0.68 | Chem. Engr. 3-24-69
Guthrie | 46,130 | 46,130 | | | Item | No. | AREA / - | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | | 1. | Clarifier | 1 | 4.0 x 10 ⁻³ m ³ /s | 14001 | PEDCO (PE-146) | 104,530 | 104,530 | | 2. | Pumps, pond
feed | 2 | 1.0 x 10 ⁻³ m ³ /s, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 980 | 1,960 | | 3. | Pump, clarifie
water recycle | r 2 | $3.9 \times 10^{-3} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 2,750 | 5,500 | | 4. | Pumps, particulate pond water recycle | 2 | $2.3 \times 10^{-1} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 1,610 | 3,220 | | 5. | Pumps, 30 ₂ pond water recycle | 2 | $4.2 \times 10^{-4} \text{ m}^3/\text{s}$, carbon steel, neoprene lined | quirements | gpm and head re-
resulting in
motor and impeller | 710 | 1,420 | | | SUBTOTAL | | | | | | 116,630 | ### TABLE A-6 (Continued) AREA 8 - UTILITIES Note: There is no process equipment in this area. #### AREA 9 - SERVICES | | Item | No. | Description | Size-Cost
Scale
Factor | • | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |----|------------------------------------|-----|-------------|------------------------------|---|------------------|--------------------------------|---------------------------| | 1. | Payloader | | | | | | 31,300 | 31,300 | | 2. | Plant
vehicles | | | | | | | 12,630 | | 3. | Maint. & instrument shop-equipment | | | | , | | 33,320 | 33,320 | | 4. | Service
building-
equipment | | | | | | 44,170 | 44,170 | | 5. | Stores-
equipment | | | | | | 13,380 | 13,380 | | | SUBTOTAL | | | | | | | 134,300 | #### AREA 10 - PARTICLE RECIRCULATION | Item | | No. | Description | Size-Cost
Scale
Factor | Factor
Source | Base
Cost
Each
(1977) | Total
Mid-1977
Cost | |------|---|-----|--|------------------------------|--|--------------------------------|---------------------------| | 1. | Wet ball mill | 1 | 2.3 x 10 ⁻⁴ m ³ /s | 0.65 | McGlamery | 25,260 | 25,260 | | 2. | Pump,
particle
recirculation | 2 | 2.3 x 10 ⁻⁴ m ³ /s, molded polypropylane | quirements | gpm and head re-
resulting in
motor and impeller | 500 | 1,000 | | 3. | Tank,
particle
recirculation
surge | 1 | Capacity 0.8 m ² , carbon steel, neoprene lined | 0.68 | McGlamery | - 330 | 830 | | | SUBTOTAL | | | | | | 27,090 |