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Overall Project Outcome and Results 
We examined characteristics of land cover and forage quality that could be affecting the declining 
Minnesota moose population at multiple spatial and temporal scales. At a broad spatial scale, we found 
that the landscape of NE Minnesota has changed over 18 years, both in the composition (e.g., more 
coniferous and less mixed-wood forest) and arrangement (e.g., decreased fragmentation of coniferous 
forest and increased fragmentation of mixed-wood forest) of forested land-cover types. At the scale of 
the moose survey unit (2.8 x 5 miles), some of these changes appear to be related to moose population 
dynamics. Specifically, moose tended to have higher population growth rates in cooler areas and in 
survey units that had more young and mixed-wood forest, less coniferous and deciduous forests, and 
less fragmented forested wetlands. We found that, during summer, moose are in fact altering their 
behavior to seek out mixed-wood forest at the hottest times of the day, and because we found that 
forage availability differs both by cover type and by location in moose range, these decisions may be 
affecting diet. Further, because the diets of animals that died were different from those of live animals, 
we suspect that the availability of high-preference foods may be critical. Because several independent 
sources of data all point in a similar direction, we recommend a large-scale, long-term experiment to 
explicitly test how different combinations of land cover and food availability may be affecting moose 
habitat use and population dynamics. Specifically, we suggest working with forest managers to harvest 
blocks of forest stands to manipulate overstory and understory features that appear to be important to 
moose. Monitoring the success of these manipulations with collared animals and camera traps over a 5-
10 year period could help determine how to best manage forest landscapes for a healthy moose 
population. 
 
Project Results Use and Dissemination  
This research has been presented 15 times at national or international research conferences or invited 
seminar series. The research team has worked with the Bell Museum to contribute information related 
to the moose diorama and also provided an extensive interview to the “Access Minnesota” radio show. 
Three scientific articles have been published so far, and the research team is working with MNDNR and 
tribal biologists to discuss the results and implications of this work. Finally, 12 undergraduate students, 
five graduate students, and three postdoctoral researchers received training as part of this project; 

http://fwcb.cfans.umn.edu/forester/index.html


results from this research have been added into teaching materials in two required Fisheries, Wildlife, 
and Conservation Biology courses at UMN. 
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completed and final products delivered. 
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I.  PROJECT TITLE: Impacts of forest quality on declining Minnesota moose. 
 
II. PROJECT STATEMENT: 
The Minnesota moose population is declining dramatically and has become a growing concern for conservation. 
In addition to being an iconic species of northern Minnesota, moose are keystone herbivores that are an 
important component of Minnesota’s forested ecosystems. The specific mechanism causing their rapid decline 
has not been fully uncovered because many factors affect how well moose survive and reproduce. Ultimately, 
the most important tool available to natural resource managers is their ability to manipulate the spatial 
distribution and diversity of high-quality habitats (Figure 2).  Management decisions will clearly benefit from 
scientific guidance to ensure manipulations have maximum impact on stabilizing the moose population in 
Minnesota.  
 
The Minnesota Department of Natural Resources (MNDNR), the Grand Portage Band of Lake Superior Chippewa 
(GPBLSC), and the University of Minnesota began a moose tracking effort in 2013 to determine cause-specific 
mortality within the moose population (128 GPS collars were deployed). In addition, Dr. Ron Moen (NRRI) is 
working on a moose habitat restoration project in which he is assessing how food availability, quality, and 
consumption by moose changes in forests with different disturbance histories. We propose to build upon both 
of these LCCMR-funded research projects to explore how the landscape context in which individual animals live 
can directly affect the animals’ diet and their subsequent body condition and mortality risk. Understanding how 
forest age, structure, and composition can affect the distribution of food and cover (and thus impact the 
movement patterns of moose) is critical to inform broad-scale management efforts that are aimed to improve 
the forest landscape for moose and thus stabilize the population.  
 
Our broad aim is to link the behavior, diet, and survival of moose to the spatial distribution of food and cover. 
Our team will build upon existing moose research in the state to address two primary research goals: 
 

1) Regional Scale: Link regional patterns of moose abundance through time to the geographic 
distribution and relative forage quality of different land-cover types and forest stand ages. 
 

2) Local Scale: Determine if the distribution of resources affects the diet of individual moose and 
whether dietary differences among animals are associated with variation in body condition or 
mortality risk.  

 
This will be the first study to link the movement behavior and landscape context of individual moose (e.g., the 
distribution of food and cover within an animal’s home range) to the animals’ diet, body condition, and mortality 
risk. It will allow us to place the moose movement, mortality, and forage quality data already being generated by 
LCCMR funding into a detailed ecological and behavioral framework that will provide critical and timely insight 
into the causes of the moose population decline. 
 
III. PROJECT STATUS UPDATES:  
Project Status as of 1 December 2014:    
We had a successful first field season – collecting several thousand plant samples at 140 sites distributed across 
moose range in northeastern Minnesota. We have also begun running stable isotopic analysis of hair previously 
collected from moose and the initial results confirm the large amounts of variability we saw in our pilot analysis 
conducted last year. Our graduate student has found other funds to support his stipend, so we are using the 
remaining funds initially set aside for his summer salary to support a postdoctoral researcher for 6 months next 
year. This person has already been working on moose in Ontario and will be able to do the critical initial 
organization of the moose movement data and begin to develop statistical models that link resource availability 
to diet composition. 
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Our work with the FIA data is also proceeding as planned. We have summarized annual estimates of land-cover 
compositions within each moose survey unit and have developed initial population models to understand if 
changing land cover is linked to dynamics in the moose population. We are now working with remote sensing 
labs to begin the process of developing a time series of Landsat images within our study area.  
 
LCCMR approved the amendment to add the postdoctoral scholar to the personnel budget category -December 
17, 2014. 
 
Amendment Request 30 April 2015: 
 
We would like to shift the GIS and Statistical consulting funding in Activity 1 “Professional/Technical Service 
contracts” to “Personnel” in Activity 1. We were originally planning on getting this done through an external 
contract but we decided that using UMN facilities would produce a more consistent product since they 
specialize in MN satellite analysis. We are requesting that we use $25,000 to pay 3.5 months of GIS analyst time 
(split between the Knight and Falkowski labs) to produce the satellite products we need for the next phase of 
this project. We have made no changes in the work plan as this is simply a shift in the budget that will yield the 
same product. Approved by the LCCMR 5/1/2015 
 
Project Status as of 31 May 2015:    
We hired a postdoc for this project to compile the moose movement data collected by many researchers in the 
state. He has finished cleaning these data and is well into his analysis of how moose change their selection of 
landscapes based on time of day and changes in daily temperature. We are preparing for another field season to 
collect additional vegetation data and control points to help with validating the land-cover classification we have 
commissioned from the Knight lab.  Our initial results from the stable isotope analysis show that we can detect 
differences in isotopic ratios in different cover types and across a summer temperature gradient in the study 
area; we see similar patterns in the moose hair that we have analyzed. As we continue to collect more data, we 
will use this information to build models to estimate the diet of individual moose and relate this to body 
condition, behavior, and survival. 
 
Project Status as of 31 January 2016: 
Our second field season went very well. We focused on collecting aquatic vegetation during June and continued 
to collect data on forage abundance and composition throughout the study area for the rest of the summer. 
Although our progress has been slightly hampered by a malfunctioning mass spectrometer and having one of 
our remote-sensing colleagues move to another university, we are still making progress with the analysis. Our 
first manuscript was accepted for publication in Landscape Ecology, and in it we show that Minnesota moose 
strongly alter their selection of land-cover composition based on ambient temperature; this effect was not as 
strong in moose followed in Ontario where forest composition is more mixed (i.e., foraging opportunities are 
closer to thermal cover). We will use the results from this paper to help drive our analysis of landscape patterns 
at the individual and population levels.  
 
Project Status as of 31 May 2016:  
We conducted a winter field season to collect browse samples at our field sites. In the lab, we have been 
focusing on finishing our stable isotope analyses and our initial data set has shown that the moose in the state 
eat markedly different diets depending on where they live; these differences are even more dramatic when 
seasonal changes in diet are examined. Now that we have our improved land-cover classification, we have 
begun examining how forage composition and availability differs among cover types and by disturbance history. 
We are currently preparing for our final field season in which we will primarily collect plant samples and forage 
biomass data from forested wetlands.  
 
Project Status as of 1 May 2017: 
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We received the historical land-cover data for moose range and are in the process of analyzing how the 
composition and arrangement of different land-cover classes change across moose survey units. Half of our 
stable isotope and metabolomics samples are still being analyzed by the labs; however, we expect the data to 
arrive in the next two weeks. Our spatially-explicit population estimation model has shown great improvement 
over previous versions and we continue to refine it using the newly received historical land-cover data.  Our 
initial model to predict forage biomass across moose range using LiDAR has limited predictive power due to high 
variation in the observed field data; we are currently testing whether adding in additional data layers (land 
cover, topographic position, soils) will improve the model. Using data collected from recovered moose collars, 
we have developed an approach to estimate the amount of time an animal spends foraging at different times of 
the day; our initial results indicate that, during summer, moose actively forage the most during dawn and dusk. 
This suggests that the cover types preferred by the animals at these times will be the most important 
contributors to the overall summer diet of the moose. Because our data have been delayed due to processing 
issues in the labs we contracted with, we are slightly behind our initial schedule. We anticipate being able to 
complete the work on time if we are able to move some of the unspent budget to personnel. 
 
Amendment Request 1 May 2017: 

Personnel (Wages and Benefits): $47,815 
Because so much of the contracted data (historical land-cover layers and plant chemical composition results) 
have been late to arrive, we need extra help on the analysis end. We request the unspent and 
unencumbered amounts in the other budget sections ($47,815) to be transferred to Personnel to fund 
additional work on the final analysis (two full time and one part-time graduate student, a postdoc, and one 
month of PI Forester’s time). One graduate student worked for one month to develop models that allow us 
to identify moose behaviors in different areas of the landscape (i.e., proportion of time foraging in 
wetlands), another student is currently working full time on refining the moose diet composition models, 
and a third student is developing a program that will help us predict how moose distributions will change in 
response to different distributions of land-cover and other resources. The postdoc is refining forage 
availability maps for moose range and also developing the spatially-explicit population estimation model; 
Forester will continue to work on a population dynamics model that will further refine the spatially-explicit 
estimates. For the graduate students and postdoc, we are making this request retroactively because 
although we had discussed these changes with LCCMR staff and prepared our amendment request earlier in 
the year, the report was mistakenly not sent out before leaving for the field this winter. 
 
Professional/Technical/Service Contracts: -$2,084  
In 2013, we began running stable isotope analysis on plant and animal tissue at the stable isotope lab in the 
Department of Earth Sciences at the University of Minnesota; however, multiple stoppages due to a wide 
range of technical issues slowed progress for extended periods of time. In mid 2014, a new isotope lab in the 
Department of Soil Sciences was up and running, and to help minimize our dependence on the lab in Earth 
Sciences, we decided to run samples in this lab as well. Prior to sending new samples to this lab we decided 
to run a series of replicates to ensure that we would not experience any lab-specific bias. Unfortunately, this 
lab is tuned to running soil samples and the nitrogen values we received were well outside normal δ15N 
values of plant and animal tissues. In mid 2015, the stable isotope laboratory in the Department of Earth 
Sciences at the University of Minnesota began to occasionally encounter severe column issues that resulted 
in unreliable nitrogen values, which is a critical part of our analysis, and by mid 2016, this lab decided to stop 
running samples until the issue had been completely resolved. At this point we were beginning to get too far 
behind schedule and began to look for other stable isotope labs to analyze our samples in case the UMN 
machine took too long to repair. Unfortunately, we could not find other labs in the state of Minnesota that 
run outside samples. After comparing prices at three different isotope laboratories (the University of 
California at Santa Cruz, University of Utah, and University of California at Davis), we found the lowest price 
at the University of California at Santa Cruz ($11.74/sample compared to $13.13/sample and $12.50/sample 
at the other labs — note that this price includes weighing out of the samples, a service not included in the 
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$9/sample charged at UMN, so this price is not substantially higher than our original in-house rate). The 
Santa Cruz lab is a national leader in stable isotope ecology and specializes in the analysis of a broad range 
of materials, including plant and animal tissues. In addition, they have an excellent reputation for working 
with large numbers of samples and with individuals from outside the University of California system. We 
contacted the University of California at Santa Cruz in July of 2016, and sent them approximately 50 
replicate samples. Within two weeks we received these replicate data and they aligned extremely well with 
the same samples run in the Department of Earth Sciences at the University of Minnesota. We continued to 
wait for the UMN stable isotope lab to come back online; however, by the end of 2016 the machine was still 
down so we decided to send our remaining samples to Santa Cruz. We are asking for a retroactive approval 
for this switch because Forester did not realize that approval was needed before changing service providers. 
The Santa Cruz Stable Isotope Lab is currently processing our samples (2191 samples for $25,719) and 
should have the results to us in the next few weeks. To get more information on chemical composition of 
forage, we processed samples using liquid chromatography–high resolution mass spectrometry (LC–HRMS) 
in the UMN Metabolomics lab ($15,000). Finally, the Knight Lab in UMN preferred to charge us under a 
Professional Contract instead of us paying salary as originally planned ($5,000). We request the balance of 
this portion of the budget ($2,084) to be transferred to Personnel. 
 
Equipment/Tools/Supplies: -$385 
Because much of our sampling was moved to an external lab, we did not need to purchase as much lab 
equipment and supplies as expected. Of the difference, $5845 is being reallocated to pay for the non-capital 
GPS receiver; we request the balance ($385) to be transferred to Personnel. 
 
Capital Expenditures: -$5,845 
Because the GPS system included two different parts (a data recording tablet and a high-precision GPS 
receiver), they could not be listed as capital expenditures so $5845 was paid out of the Equipment budget. 
We request the budget for Capital Expenditures ($5,845) be transferred to Personnel. 
 
Travel expenses in Minnesota: -$39,500 
We were able to find much cheaper than expected accommodation for our field crew, and ended up 
requiring the vehicle for less time during the year. We also needed to hire the crew at a higher hourly rate to 
be competitive so we did not pay for meals over the entire period. As a result of these reductions, this 
budget line was not heavily used. We request the balance ($39,500) be transferred to Personnel. 

 
Project Status as of 31 June 2017: 
We are still waiting on the results from Santa Cruz. The UMN stable isotope lab realized they had not processed 
some of our samples they had on file, so they have sent them to Santa Cruz for processing. As a consequence, 
we moved $2,178 to that contract.  
 
Overall Project Outcome and Results 
We examined characteristics of land cover and forage quality that could be affecting the declining Minnesota 
moose population at multiple spatial and temporal scales. At a broad spatial scale, we found that the landscape 
of NE Minnesota has changed over 18 years, both in the composition (e.g., more coniferous and less mixed-
wood forest) and arrangement (e.g., decreased fragmentation of coniferous forest and increased fragmentation 
of mixed-wood forest) of forested land-cover types. At the scale of the moose survey unit (2.8 x 5 miles), some 
of these changes appear to be related to moose population dynamics. Specifically, moose tended to have higher 
population growth rates in cooler areas and in survey units that had more young and mixed-wood forest, less 
coniferous and deciduous forests, and less fragmented forested wetlands. We found that, during summer, 
moose are in fact altering their behavior to seek out mixed-wood forest at the hottest times of the day, and 
because we found that forage availability differs both by cover type and by location in moose range, these 
decisions may be affecting diet. Further, because the diets of animals that died were different from those of live 
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animals, we suspect that the availability of high-preference foods may be critical. Because several independent 
sources of data all point in a similar direction, we recommend a large-scale, long-term experiment to explicitly 
test how different combinations of land cover and food availability may be affecting moose habitat use and 
population dynamics. Specifically, we suggest working with forest managers to harvest blocks of forest stands to 
manipulate overstory and understory features that appear to be important to moose. Monitoring the success of 
these manipulations with collared animals and camera traps over a 5-10 year period could help determine how 
to best manage forest landscapes for a healthy moose population. 
 
Project Results Use and Dissemination  
This research has been presented 15 times at national or international research conferences or invited seminar 
series. The research team has worked with the Bell Museum to contribute information related to the moose 
diorama and also provided an extensive interview to the “Access Minnesota” radio show. Three scientific articles 
have been published so far, and the research team is working with MNDNR and tribal biologists to discuss the 
results and implications of this work. Finally, 12 undergraduate students, five graduate students, and three 
postdoctoral researchers received training as part of this project; results from this research have been added 
into teaching materials in two required Fisheries, Wildlife, and Conservation Biology courses at UMN. 
 
IV. PROJECT ACTIVITIES AND OUTCOMES:   
 
ACTIVITY 1:  Linking moose abundance to broad-scale distributions of food and cover that change across space 
and through time. 
Description:  We hypothesize that broad-scale changes in the arrangement (rather than simply the abundance) 
of important cover types (e.g., young and mature forest, wetlands) measured at the level of four townships or 
larger will be linked to changes in moose abundance.  Areas dominated by one cover type (e.g., young forest) 
will be avoided in preference for areas that contain a mixture of cover types that provide reduced distances 
between thermal cover and high quality forage. We will use a combination of USFS Forest Inventory and Analysis 
(FIA) data and satellite data (both collected repeatedly over the last 13 years) in conjunction with data from the 
MNDNR moose survey to examine how the moose population has responded to changes in distributions of 
resources across its Minnesota range.  
 
Our broad-scale analysis will use data from the 2012 FIA database in addition to time series of classified satellite 
images. The FIA data will be analyzed using geographic information system (GIS) techniques to examine 
differences in the amount and types of habitat available to the moose population in different survey zones.  We 
will also create a new satellite classification for portions of the moose range in NE Minnesota. This classification 
(based on historic and current satellite images) will be specifically developed to focus on moose habitat and will 
subsequently be analyzed using Fragstats and texture statistics to describe how the amount and distribution of 
different land cover types change across space and through time. The results of these two analyses will then be 
compared with the relative abundance of moose on plots with differing habitat characteristics. 
 
To understand the process that may lead to moose selecting one landscape over the other, we need to 
understand how forage availability changes across space. We will characterize the forest communities in 61 sites 
(Figure 1) that represent a range of cover types and known disturbance histories. Our sampling methodology is 
adapted from previous studies in Superior and Chippewa National Forests and will help us predict how forage 
resources change in response to land-surface attributes (e.g., soil type, aspect, land cover). These data will allow 
us to determine whether coarse distributions of food and cover are correlated to local estimates of moose 
abundance. 
 
Finally, to quantify how the moose population is responding to changes in the landscape, we need to describe 
how the spatial distribution of the animals has changed through time. The existing population estimation model 
was designed to provide a region-wide population estimate. We will collaborate with the MNDNR researchers to 
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refine the model so that it will allow for finer-grained analysis. This approach will allow us to make relative 
estimates of local abundance over the last 8 years. Using these results we will determine if there is spatial 
variation in local moose population trends and whether this variation is linked to changes in landscape 
characteristics. 
Summary Budget Information for Activity 1: ENRTF Budget: $  140,911 
 Amount Spent: $  118,328 
 Balance: $    22,583 
Activity Completion Date: September 2016 
Outcome Completion Date Budget 
1. Analyze data from 1,258 FIA plots and the moose survey data to 
determine how broad-scale patterns of landscape change are linked to 
moose population dynamics. 

December 2014 $ 8,570 

2. Produce a new classification of satellite data for NE MN to show how 
the distribution of high-quality moose habitat has changed in recent 
years. 

September 2015 $ 36,848 

3. Identify how the species composition of moose forage changes 
among land-cover types and in response to stand age. 

December 2015 $ 69,448 

4. Publish a spatially-explicit analysis of how moose population density 
changes in response to availability and arrangement of forage in the 
landscape. 

September 2016 $ 13,012 
 

 
Activity Status as of 1 December 2014:    
Data from 1,258 FIA plots has been compiled and summarized for each moose survey block. Existing land-cover 
data have also been summarized in those areas. We have completed an initial population analysis and will be 
summarizing our results in a manuscript we hope to submit early in 2015. 
 
Activity Status as of 31 May 2015:    
We have continued to analyze population data and have identified two labs at UMN to produce current and 
historic moose-specific land-cover data for this region. Joe Knight’s lab will lead the 2013 update and Mike 
Falkowski’s lab will produce historical satellite classifications so that we can compare previous populations to 
changes in cover type availability. We have updated the moose population data and FIA data and are continuing 
to develop a model that describes how the population responds to broad-scale change. Although still a 
preliminary analysis, we see that the areas with larger amounts of forest that also include mixtures of young 
birch and aspen tend to host larger local moose populations; however, broad-scale changes in landscape 
composition did not account for the majority of the region-wide decline. Once we have satellite classifications 
through time, we will be able to determine if annual changes in the structure and arrangement of the landscape 
is important. Our postdoc, Garrett Street, has been compiling moose location data from the DNR, Voyageurs 
National Park, and the Grand Portage Band to examine if changes in daily temperature during the summer affect 
how the animals select habitat. We are planning to compare these data to moose movement data collected in 
Ontario in the mid 1990s to see if there are differences in behavior across a broader range of habitats and 
ambient temperatures. 
 
Activity Status as of 31 January 2016:    
The production of our landcover maps is still in progress in part because Mike Falkowski left UMN for a job at 
Colorado State; his lab is continuing to work on the product and expect to deliver in early summer. Our 2013 
map was also delayed but is nearly finished and we expect a draft in March. Despite this setback, we have been 
progressing well with the analysis of how moose use the landscape. The postdoc on this project, Garrett Street, 
has finished compiling moose movement data from a variety of sources in Minnesota and Ontario (the 
population in Ontario is not experiencing a decline and thus provides a useful comparison). Using a much 
coarser land-cover classification, we analyzed how the animals alter their habitat selection through the day and 
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as temperatures change during summer. We found that habitat selection patterns of moose in Minnesota were 
more dynamic than those in Ontario and indicated time- and temperature-dependent trade-offs between use of 
foraging habitat and thermal cover. Specifically, we found that during the hottest part of the day, Minnesota 
moose tended to choose landscapes with large amounts of treed wetlands and coniferous forest – both cover 
types that provide fewer and lower-quality foraging opportunities. Ontario moose tended to spend more time in 
mixedwood forests where thermal cover and foraging opportunities are in close proximity; this cover type is 
more abundant and evenly distributed in Ontario compared to Minnesota.  These results suggest that 
differences in landscape structure may drive moose to select sub-optimal habitat when temperatures rise in the 
summer; this selection behavior may have long-term consequences if animals must repeatedly forgo foraging 
opportunities and more frequently travel between foraging habitat and thermal cover. Our next steps will be to 
more closely examine how variation in movement behavior is explained by broad-scale habitat characteristics. 
 
 
Activity Status as of 31 May 2016:    
We have received the updated classification of moose-specific cover types for NE Minnesota; production of the 
historical land-cover dataset is in progress and we expect to receive those classifications by August. We are now 
working on the analysis of how forage diversity and abundance change among cover types and disturbance 
histories; this analysis will be completed by the end of summer. In March, we collected winter browse across our 
study area and are preparing those samples for analysis. We are also preparing for our final field season in which 
we will focus primarily on collecting data in forested wetlands.  
 
Activity Status as of 1 May 2017:    
We have developed an improved spatially-explicit population estimation model that accounts for sightability of 
moose. Upon receiving the historical land-cover data on 28 April, we began calculating landscape metrics for all 
of the moose survey units (for time periods starting in 1999 to present). We are now starting to include metrics 
of land-cover arrangement and composition to see if they have an effect on local populations of moose. Our 
initial findings, that include only Forest Inventory and Analysis data and three years of Landsat cover-type 
composition data, suggest that moose populations decline slower in areas that have lower summer and winter 
temperatures and where there are mixtures of mature forest and young deciduous forest. We are attempting to 
use maps of land-cover type, LiDAR estimates of vegetation complexity, and topographic position to model 
forage biomass availability across moose range. This model will be important to provide context to the moose 
diet estimates we are developing for Activity 2 (i.e., it will allow us to determine if there is diet selection in the 
different areas); however, our field data show that biomass is highly variable even within cover types, so we are 
looking to add additional information (e.g., soils data) to improve our predictive power. To predict the 
proportion of time moose are travelling, foraging, and resting at different times of the day and when they are in 
different land-cover types, we have developed models (using observations of captive moose) to use activity data 
to predict behavior (our preliminary analysis is only on three animals, but these activity data are available for all 
animals for which we have recovered GPS collars). This analysis shows that in the summer, moose forage the 
most during dawn and dusk, and spend > 75% of their time resting during the middle of the day. Our next step is 
to link these behavioral patterns to the habitat use and diet composition of specific animals. 
 
Final Report Summary:  
 
I. Landscape analysis (Outcomes 1.1, 1.2) 
 
Two separate products were created for this portion of the project. First, the Knight lab at UMN reclassified the 
northeastern portion of the state using the same approach they used to produce their most recent state-wide 
classification but with the added goal of identifying key moose habitat types. Our field plots provided additional 
ground-truth data for this object-based product in which land cover was classified into moose-centric cover 
types. This product was used for all analysis of diet and movement patterns of moose because it uses many 
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sources of current data (e.g., LiDAR, current ground-truth points). Because all of the supplementary data sources 
are not available before 2011, we needed a second approach to produce historical land-cover maps. This second 
product was a time series of classified imagery produced by the Falkowski lab. These data relied on historical 
Landsat imagery and yielded biennial land-cover maps for the study region from 1999 to 2016. This time series 
allowed us to identify changes in forest composition through time for the population analysis (Outcome 1.4). 
Both of these datasets will be made publically available on UMN DRUM in fall of 2019. 
 
To determine how the forested landscape of northeastern Minnesota has changed in recent years, we analyzed 
two sources of land-cover data: the US Forest Service’s Forest Inventory and Analysis (FIA) data (based on 
repeated surveys of forest stands from 2005 to 2015) and an 18-year, biennial time series of classified satellite 
data (from the Landsat satellite). We found that there has been a surprising increase in the amount of conifer 
forest (12% of the average moose survey unit in 1999 compared to 20% in 2015, Figure 1.1), with a decrease in 
mixed forest (i.e., a fine-scale mixture of deciduous and coniferous trees; 30% in 1999, 26% in 2015) and 
forested wetland (18% in 1999, 11% in 2015). Although the proportion of deciduous forest has stayed relatively 
stable since 2005 (at about 16%), the FIA data show that the composition of those stands is changing, in part 
due to declines in aspen, birch, and willow (key food sources for moose). 
 
In addition to changes in the proportions of the dominant forest cover types, from 1999 to 2015 the overall 
landscape has become more fragmented: current landscapes have a greater edge density due to patches of 
different land-cover types having more complex edges (mean Edge Density increased from 8453 in 1999 to 9428 
in 2015).  This increase in fragmentation is subtle, but appears to be driven by decreases in the aggregation of 
forested wetlands and mixed forest, and increases in the edge-to-area ratios of patches of those cover types 
(Figure 1.2). Despite the overall increase in fragmentation, as coniferous forest has become more dominant in 
the region, this cover type has become more aggregated with lower edge-to-area ratios (i.e., less fragmented).  
 
The implications of these changes on moose populations are that the landscapes in which they live are being 
altered in ways that may be suboptimal for their needs. While all land-cover types are used by moose in some 
fashion, the relative amounts of these cover types, their distribution in the landscape, and the plant composition 
of their understory (i.e., the quality and abundance of moose food) will affect where moose go and how well 
they are able to survive and reproduce when they get there. 
 
 
 
II. Forage availability (Outcome 1.3) 
 
a) Forage availability by cover type 
We estimated forage availability at 70 sites distributed within three broad areas of moose range (Figure 1.3). 
These areas were distinguished by their summer temperatures (Figure 1.4) and are referred to as Cold (NE 
portion of moose range near Grand Marais), Moderate (SE portion of moose range near Isabella), and Warm 
(NW portion of moose range near Ely). We classified potential food plants into four different groups based on 
previous studies of moose dietary preference: aquatics, high, medium, and low. The species that we categorized 
into each group are as follows: 
o aquatics – all aquatics collected from the warm and cold regions 
o high – paper birch, trembling aspen, and all willows. 
o medium – all cherries and maples, as well as mountain ash 
o low – all species of service berry, dogwood, and alder, in addition to balsam fir, beaked hazel, and any 
other species that are not included in the original preference study but might be encountered and sampled on 
an occasional basis (e.g., green and black ash, red pine, and white pine) 
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Using standardized methods developed by the UMN Department of Forest Research, we recorded the species 
composition and biomass of each of the forage preference groups. We found that all forest types had greater 
amounts of high-preference forage in the Cold region, while the Warm and Moderate region forests had more 
low-preference forage (Figure 1.5). 
 
Collectively, our results suggest that cover type plays an important role in dictating the availability of forage for 
moose, with mixed and coniferous forest types offering more forage than any other cover type (Table 1.1). 
When compared to the amount of forage available in conifer habitat, grasslands and regenerating forest had 
substantially less food available to moose. Although we also found statistical evidence that deciduous and 
wetland habitat offer less forage for moose, the support for this relationship was not as strong (Table 1.1). We 
were initially surprised that regenerating forests tended to have much lower forage availability than other cover 
types; however, the reason for this is that regenerating forests are highly variable in biomass and species 
composition depending on the age of the regeneration (e.g., one year after a severe fire would have different 
forage availability than 10 years after a fire). 
 
 Overall, our results emphasize the importance of mixed-wood forest, which tended to have as much or more 
forage biomass than coniferous stands. It is also important to point out that while forage from different 
preference groups also varied among cover types, these differences were strongest for low and medium-
preference forage (Table 1.2). Evidence for differences in the availability of high-preference forage among cover 
types was marginal. 
 
Table 1.1 Results of generalized linear model testing the influence of cover type on overall forage 
availability. We used coniferous forest as our reference category.  
 
cover type estimate standard error t-value p-value 
deciduous forest -0.3780 0.1868 -2.023 0.0472* 
wetland -0.3779 0.1678 -2.252 0.0278* 
grassland -0.6894 0.1647 -4.185 0.0001* 
mixed forest 0.1745 0.1715 1.018 0.3126 
regenerating forest -0.6147 0.1596 -3.851 0.0003* 
*Indicates a statistically significant difference (α = 0.05) when compared to our reference group (coniferous forest). 
 
Table 1.2 Results of one-way ANOVAs assessing how forage from different preference groups varies 
among cover types. For all tests we used coniferous forest as our reference cover type. 
 
preference  
group cover type estimate standard error t-value p-value 

low      
 deciduous forest -0.20543 0.07876 -2.608 0.0113* 
 wetland -0.11318 0.07075 -1.600 0.1146 
 grassland -0.35465 0.06944 -5.107 < 0.0001* 
 mixed forest 0.11146 0.07227 1.542 0.1279 
 regenerating forest -0.29696 0.06728 -4.414 < 0.0001* 
medium      
 deciduous forest -0.03562 0.03582 -0.994 0.3238 
 wetland -0.10010 0.03218 -3.111 0.0029* 
 grassland -0.10826 0.03158 -3.428 0.0011* 
 mixed forest -0.03089 0.03287 -0.940 0.3508 
 regenerating forest -0.10483 0.03060 -3.426 0.0011* 
high      
 deciduous forest -0.13694 0.12419 -1.103 0.2743 
 wetland -0.16466 0.11157 -1.476 0.1449 
 grassland -0.22644 0.10950 -2.068 0.0427* 



11 
 
 

 mixed forest 0.09395 0.11397 0.824 0.4128 
 regenerating forest -0.21289 0.10610 -2.007 0.0490* 
*Indicates a statistically significant difference (α = 0.05) when compared to our reference group (coniferous forest). 
 
 
 
b) Forage availability by stand age 
 
The 70 semi-permanent plots that we sampled represented disturbed stands from three different time periods 
(2002, 2006, and 2011) in addition to areas that have not experienced any known disturbance in the recent past 
(≥ 25 years). For each of the stand ages, we calculated the mean biomass (kg/m2) of each forage preference 
group across different stand ages (≥ 25 years, 13 years, 9 years, and 4 years) to estimate how biomass 
availability changes with disturbance in each temperature region (Figure 1.6). There was no significant 
difference with respect to disturbance age for any class except the medium-preference forage (there was 
slightly more of this food source in the 13-year old stands); however, the warm and moderate regions had 
consistently lower biomass in all preference groups and stand ages, compared to the cold region (Figure 1.6). 
 
We used generalized linear models to determine if the overall availability of forage varies as a function of stand 
age and multivariate analysis of variance (MANOVA) to determine if the availability of forage from different 
preference groups varies as a function of stand age. For MANOVA tests that had a significant effect, we 
performed one-way ANOVA’s to determine the most important relationships. 
 
The influence of stand age on forage availability varied among age categories (Table 1.3). Specifically, overall 
availability of forage in 9-year old stands is significantly lower from that available in control plots (stand age ≥ 25 
years), whereas there was no difference between control plots and stands that were either 4-years old or 13-
years old. However, despite this lack of significance, the disturbed stands typically had less biomass than the 
control plots (Table 1.3). The relative proportions of different forage preference groups was highly variable, but 
the moderate and warm regions were more similar in their distributions than the cold region (Figure 1.5). 
 
 
Table 1.3 Results of generalized linear model testing the influence of stand age on overall forage availability. We 
used forest stands with an age of 25 years or more as our reference category.  
 
Stand Age estimate standard error t-value p-value 
4 years -0.3587 0.2129 -1.934 0.0575 
9 years -0.4587 0.2150 -2.134 0.0367* 
13 years -0.4117 0.2092 -1.714 0.0912 
*Indicates a statistically significant difference (α = 0.05) when compared to our reference category. 
 
 
 
III. Moose Population Density (Outcome 1.4) 
 
We examined how moose were distributed across the region by quantifying, 1) what landscape and 
environmental factors affect moose movement and habitat selection decisions, and 2) how broad-scale 
characteristics of the landscape (e.g., the composition of forest cover types within each moose survey unit) 
affect the local population growth of moose. To describe the individual-scale patterns of moose habitat use, we 
examined how moose in Minnesota changed their movement patterns in response to available habitat and 
ambient temperature. We then compared these patterns to those from moose in Ontario, Canada. We 
estimated summer resource selection models for 134 adult female moose in Minnesota and 64 in Ontario. We 
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found that while the moose in Ontario did not show strong patterns of resource selection (and very little 
response to ambient temperature), the Minnesota moose had strong patterns in selection that changed both 
throughout the day and in response to temperature (Figure 1.7). In particular, MN moose selected for mixed 
forests and treed wetland during the middle of the day and whenever the temperature was above their thermal 
optimum (i.e., 14° C). In the evening hours, or during lower temperature periods, the moose tended to favor 
open uplands. Overall, moose used the mixed forest type much more than expected based on availability 
throughout the day. This suggests that it is a critical habitat for moose, likely because of the large amount and 
diversity of forage available (see II above) and because of the fine-scale mixture of coniferous and deciduous 
trees that allows for thermal cover during the hottest parts of the day. The contrast with moose from Ontario 
was marked; however, this difference is likely because the mixed forest type dominates the Ontario landscape, 
so moose have an abundance of thermal cover and food and thus do not need to alter their foraging or 
movement patterns in response to temperature. These results were published in Landscape Ecology: Street et 
al. 2016, and an advance in statistical methodology that stemmed from this research was published in 
Ecography: Fieberg et al. 2017. 
 
To determine what factors might be linked to changes in moose population density across the range, we 
developed a spatially explicit population model that used raw data from the DNR moose survey to estimate 
differences in population growth rate. After using moose resource selection patterns during the survey period to 
calibrate sightability, we found that moose populations were greater in areas with more mixed and young forest 
but less deciduous forest and open water (Figure 1.8). Populations were also greater in areas with larger patches 
of regenerating forest, smaller patches of coniferous forest, and less fragmented forested wetlands. Finally, 
moose populations did worse in areas and years where there were higher than usual summer temperatures (i.e., 
the heat stress index was greater). Clear patterns of high and low populations emerge across moose range, but 
they also change through time (Figure 1.9). When the predicted number of moose per survey unit was summed, 
the range-wide population estimate of this model is very similar to that produced for the region by the MN DNR 
(Figure 1.10). The advantage of our spatially explicit model is that it allows researchers and managers to more 
closely examine areas that are either doing well or declining in numbers and then use what is learned there to 
develop targeted interventions. 
 
This model explains how spatial and temporal variability in temperature and land cover can directly affect 
moose populations; however, despite the influential patterns we have discovered, it is important to note that 
there was a large, unexplained annual effect that was not directly linked to the factors we measured. Further, 
some factors may have important interactions with each other, may only be correlated with true drivers of 
population dynamics, or have effects that operate on a time lag greater than one year. For example, 
temperature alone (here included as summer Heat Stress Index, or the cumulative number of degrees that 
exceed 14°C during the summer) cannot explain the decline of the moose population by itself. This index was 
actually higher for more years in the late 1980s (Figure 1.11), and while there are no reliable moose population 
estimates from that time period, anecdotal evidence does not support a previous decline in this region. This 
model should be used to develop large-scale experimental manipulations in moose range to determine how 
altering the pattern of forest patches can affect usage by moose (and subsequent effects on the local population 
size). Future work with this model will involve collaborations with researchers currently monitoring moose 
habitat restoration areas and land managers of state, federal, private, and tribal land. The goal will be to initiate 
long-scale manipulations that will be monitored for long time periods (10-20 years). 
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Figures (Activity 1) 
 

 

 
Figure 1.1 Violin plots of the proportion of dominant forest types in moose survey units from 1999 to 
2015. 
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Figure 1.2 Two measures of fragmentation calculated for the major forested cover types. Larger 
values of the Perimeter:Area Fractal Dimension metric indicate that patches of that cover type tended 
to have more complex edges (the smallest possible value of 1 would indicate a square patch). Larger 
values of the Aggregation Index indicate that the cover type in question tends to be in fewer numbers of 
tightly packed patches in the landscape.  Collectively, these figures show that Conifer forests have 
become less fragmented while the other cover types, especially Forested Wetlands and Mixed Forest, 
have become more fragmented. 
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Figure 1.3 Distribution of biomass plots, forage sampling plots, and designated temperature regions 
across northeastern Minnesota. Biomass data and forage samples for stable isotope analysis were 
collected at those locations identified as “Biomass and Forage.” Sites identified as “Forage only” were 
visited for the sole purpose of collecting forage samples. 
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Figure 1.4 Mean maximum July temperatures in survey blocks across moose range in 2007. 
Temperature data are from the PRISM data set. 
 
 
 



17 
 
 

 
Figure 1.5 Maps of the relative abundance (a, b, c) and estimated biomass (d, e, f) of the three preference groups 
of terrestrial forage: Low (a, d), Medium (b, e), and High (c, f). Low-preference forage is present and abundant 
throughout the study area, but High-preference forage is much more prevalent in the northeastern portion of 
moose range. 
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Figure 1.6 Availability of different forage preference groups (low, medium, high) within each temperature 
region, as a function of stand age. Lines represent 95% bootstrapped confidence intervals. 
  



19 
 
 

 
 

 

Figure 1.7 Predicted selection strength (log relative risk, solid lines) by moose with 95 % Confidence 
Intervals dashed lines) for 100 % cover by land cover classifications during summer (June 1–September 
30) in Minnesota across both time of day (left column) and temperature (C) scaled to moose upper 
thermal optima (right column). Temperature is held constant at the moose upper thermal optimum (i.e., 
Δ Temperature = 0° C) in time of day plots, and time is held constant at noon in Δ Temperature plots. 
Bottom panels indicate relative rank of selection strength for each land cover class (D deciduous; C 
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coniferous; M mixed forest; W water; T treed wetland; O other) across the diurnal cycle and 
temperature gradient. Figure from Street et al. (2016).   
 

Figure 1.7 The effect of different factors, calculated at the level of moose survey units, on the population 
growth rate of moose. All factors are normalized to allow for direct comparison of their effects. 
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Figure 1.9 Spatially explicit estimates of the Minnesota moose population through time. Rectangles are 
moose survey units established by MN DNR. 
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Figure 1.10 Region-wide population estimations through time. The solid black line is the MN DNR 
estimate based on an established sightability model (red lines are 90% prediction intervals). The dotted 
black line is the population trajectory estimated from the spatially explicit model developed here (blue 
lines are 90 % prediction intervals).  
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Figure 1.11 Violin plots of Heat Stress Index for Summer (top) and Winter using data collected within 
moose survey units from 1984 to 2016. 
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ACTIVITY 2:  Linking the distribution and quality of food and cover to moose diet, body condition and mortality 
risk. 
Description:  We will use stable isotope analysis to determine how the distribution of food and cover affects diet 
and whether individual movement behavior allows some individuals to have higher quality diets in landscapes 
with lower quality habitat. We hypothesize that diets of individual animals will reflect the forage available to 
them within their home range area and that animals that live in areas with lower quality forage or larger 
distances between food and cover will have lower body condition and be more susceptible to mortality. By 
analyzing the carbon and nitrogen isotopic ratios of moose body tissues collected at capture and after death, we 
can assess individual moose diet and habitat use on timescales from several weeks to several years. We will 
combine these data with GPS locations of the same animals to test if the moose are eating what is available to 
them. This will allow us to determine the degree to which landscape context (e.g., the abundance, spatial 
distribution, and biochemical signature of land-cover types within an animal’s home range) is driving the 
movement pattern and diet of the animal. We will then determine if dietary differences among individuals can 
explain variation in mid-winter body condition or mortality risk. These results will provide suggestions on how to 
change forest management to benefit moose. 
 
During Years 1 and 2, we plan four field sessions of unequal duration each utilizing two field teams: (1) in an 
early spring session we will sample leaves and wood of common forage in one replicate plot of each land-cover 
type; (2) in a late spring session, we will revisit the same sites to describe early phenological changes in 
vegetation quality and isotopic composition; (3) in a longer summer session, we will focus on the entire range 
and sample leaves, wood, and fruiting bodies in three replicates of each land-cover type; (4) a winter session will 
focus on woody forage in one replicate of each treatment. As field conditions allow, the winter plots will be the 
same as those sampled in spring, ensuring seasonal sampling of the same plots over two years, and in each of 
these plots we will mark specific plants for replicate sampling. This sampling scheme will control for seasonal 
and inter-annual variation in forage composition over the course of the project. In Years 2 and 3 we will use the 
movement data collected from the GPS collars to ensure that we sample plants within known home ranges; this 
may require establishing some new plots. During winter sampling in Years 2 and 3, we will backtrack moose 
paths known from collar data to sample consumed vegetation and collect snow urine.  Given the number of 
plots and samples planned, flexibility in sampling during Years 2 and 3 is possible and will allow us to 
concentrate on known home ranges without sacrificing the comprehensiveness of sampling. Year 3 will also 
include revisits of a subset of sites and marked plants (this year will also include substantial ground truthing 
efforts for the satellite classifications). 
 
The stable isotopic composition of vegetation sampled in the field will be related to that of moose tissues we 
collected at capture. To develop robust estimates of diet, we need to analyze a large number (7368) of 
individual plant and animal tissue samples. For the moose, we will primarily focus on hair and hoof keratin, 
although we will opportunistically sample feces, bone, and tooth enamel from dead animals. By sampling moose 
tissues with different elemental turnover times that integrate diet over different intervals and for which isotope 
enrichments relative to diet are known, we can assess individual moose diet and habitat use on timescales from 
days to months to years. 
 
We will use statistical models to describe the survival for adult moose as a function of animal characteristics 
(e.g., age, sex, behavioral phenotype, short- and long-term diet based on stable isotope analysis, etc.) and 
landscape covariates (e.g., road density, land cover proportions, land cover patch metrics, etc.) calculated within 
each animal’s home range. We will then use these results to develop spatially explicit risk maps that we can 
compare to the local moose population trajectories developed in Activity 1. Combining these two sources of 
data will help us understand if the distribution of food and cover are mechanistically linked to the population 
dynamics of moose in Northern Minnesota. The results from this analysis will allow us to make specific 
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management recommendations related to the distribution and abundance of different land-cover types that will 
increase the probability of stabilizing the moose population. 
 
Summary Budget Information for Activity 2: ENRTF Budget: $ 159,089 
 Amount Spent: $   81,606 
 Balance: $ 77,483 
Activity Completion Date: June 2017 
Outcome Completion Date Budget 
1. Assess the nutrient quality and stable isotopic concentration of 
forage available in each collared animal’s home range. 

November 2015 $118,413 

2. Develop a time series of diet over the previous year for each collared 
moose (n=129) using stable isotopic analysis of hair collected at 
capture and after death. 

December 2015 $15,736 

3. Assess whether forage availability or diet affect the rates of survival. December 2016 $33,172 
4. Provide specific forest management recommendations to 
experimentally improve the landscape for moose in the areas of their 
range where the animals are most vulnerable. 

June 2017 $4,801 

 
Status as of 2 December 2014:    
During summer of 2014 we sampled vegetation at roughly 140 sites across northeastern Minnesota, and 
collected more than 2500 plant samples across 8 different species, ranging from low to high preference for 
moose. At each of these sites, we also estimated browse diversity and are currently working on estimating 
forage availability throughout the geographic range of moose in northeast Minnesota. 
 
To date, we have logged all plant samples with a unique identification number and are currently preparing to 
strategically analyze forage samples for stable isotopes of carbon and nitrogen. Currently we have roughly 100 
plant samples that are ready for stable isotope analysis. By mid December, we will have an additional 40+ 
aquatic vegetation samples prepared for stable isotope analysis. In the past month, we have run stable isotope 
analysis on more than 250 moose hair samples.  
 
Activity Status as of 31 May 2015:    
The mass spectrometer that we use has been unavailable for the early part of this year; however, we are 
beginning to run samples again as of 1 May. Using the data we have thus far, we began an exploratory analysis 
focused on determining whether there is a strong spatial pattern in the stable isotope composition of a key 
forage species (paper birch) across moose range. This is critical to understand because our goal is to compare 
the isotopic composition of forage plants to that of moose hair and thus estimate the likely diet of individual 
animals. Working with an undergraduate UROP student at UMN, we have found that the isotope values of paper 
birch do vary in a predictable manner based on disturbance history and region.  Although our estimates of crude 
protein (one measure of forage quality) present in the samples were constant across the study region, we found 
that the carbon and nitrogen isotope ratios of paper birch both increased in stands recently disturbed by wildfire 
or timber harvest. Further, the carbon ratios and nitrogen ratios increased and decreased respectively in the 
northwestern portion of the study area (compared to the northeast). Despite this broad-scale effect, there does 
not seem to be a strong fine-scale pattern to account for other than the impact of disturbance history; we will 
conduct similar tests with other forage species as the data come in from the mass spectrometer. When 
examining isotope ratios of moose hair, we see similar patterns: the nitrogen isotope ratios increase from North 
to South, while the carbon isotope ratios increase from East to West. These trends may be a function of regional 
changes in the isotopic composition of forage (as observed in paper birch), but they may also result from 
differences in what is available and palatable to the animals. Our next steps will be to attempt to tease apart 
these effects. 
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Our study region includes areas that experience very different summer temperatures (a difference in mean 
summer temperature of approximately a +6 degrees Celsius from Grand Portage to Ely). Temperature may affect 
the secondary compounds produced by plants to reduce palatability and digestibility of the plant tissue by 
herbivores (i.e., an overall reduction in effective forage quality). To understand how this may affect moose 
forage, we sampled trees grown in the B4Warmed study to experimentally test whether warmer temperatures 
during the growing season lead to different chemical compositions of paper birch and balsam fir. We will be 
collecting field samples of these species at our study plots this summer to see if we can detect region-wide and 
land-cover specific differences in the impact of summer temperature on forage quality. 
 
Activity Status as of 31 January 2016:    
 
The mass spectrometer malfunctioned over the summer and has been out of commission for a number of 
months. We are only now starting to get samples run; however, at this point we have first priority in the queue 
and expect to have our samples completed by November 2016. Although this is somewhat later than expected, 
we do not have other options and are still making progress on the project. We are currently revising a 
manuscript (reviewed in the Journal of Ecology) about how ambient temperature affects the chemical 
composition of moose forage species (specifically paper birch and balsam fir). We found several important 
results in an experimental setting. As temperatures increased: 1)  the diversity and relative abundance of 
secondary compounds changed for both species; 2) balsam fir reduced the total number of compounds 
produced and  paper birch reduced variance in their abundance; and 3) the concentrations of two 
representative compounds, catechin and diterpene resin acid, both declined. These results suggest that we may 
see changes in the relative palatability of different forage species across the landscape; in the coming months 
we will be testing samples collected from our study sites to see if the trends we observed in the experimental 
plots hold up in the field. As we get more stable isotope data from our plant samples, we will be able to develop 
diet models for individual animals to see if the moose are eating different plants across the region (and if this is 
linked to changes in the abundance). 
 
Activity Status as of 31 May 2016:    
 
We conducted a brief winter field season to collect winter forage from many of our sites across NE MN. These 
samples will be used to answer the question of how winter forage quality changes (if at all) across moose range. 
Our stable isotope data continue to come in, but we have been developing a workflow for analysis so that once 
all of the plant tissue samples are analyzed we can finalize our statistical results quickly. Using the data we have 
collected thus far, our preliminary results suggest that the composition of moose diets change both across space 
and through time. For example, in the central part of the range, moose diets consist of roughly 9% paper birch (a 
high-preference food) during spring; whereas in the fall, the composition of paper birch in the diet increases to 
about 30%. Similarly, diets in the western part of the range are comprised of about 21% paper birch in the 
spring, and about 43% in the fall. However, the use of balsam fir (a low-preference food) remains relatively 
constant across the geographic range of moose in Minnesota, regardless of season, making up roughly 2% to 5% 
of the diet. Moose diets in the eastern-most part of the range do not appear to change with season. We have 
also begun to analyze hair collected postmortem from collared moose. This will allow us to determine if diets of 
individual moose change dramatically year to year, and whether knowing the animals’ movement patterns help 
us to better predict their diet. 
 
 
Activity Status as of 1 May 2017:    
 
The mass spectrometer in the Fox lab again malfunctioned during summer 2016 and has been out of 
commission since. Starting in January 2017, we began sending forage samples to another lab for analysis of 
stable isotope composition. To date, we have analyzed more than 900 forage samples analyzed from 11 
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different species and 147 individual moose for stable isotopes of carbon and nitrogen, with plans to analyze 
another 2000 plant samples by the end of May. Preliminary analyses suggest that early summer diet varies 
throughout the geographic range of moose in Minnesota, and this variation is correlated with mean summer 
temperature. In the coldest parts of their summer range (close to Grand Portage), more than 80% of ingested 
forage during early summer consists of only two species – willow (44%) and maple (42%), while in the warmest 
parts of their summer range (close to Ely), 80% of ingested forage during early summer consisted of five 
different species – willow (19%), beaked hazel (17%), trembling aspen (16%), paper birch (14%), and juneberry 
(11%). These results suggest moose in the coldest part of their range have much lower dietary diversity than 
moose in the warmest parts of their range. Moreover, these changes do not appear to be associated with 
differences in the availability of different forage species, suggesting that moose in the coldest parts of their 
range are more selective feeders than moose in the warmest parts of their range. We are starting to analyze 
data collected from 100 temperature loggers that have been intermittently recording temperature at two-hour 
intervals since 2012 throughout the geographic range of moose in northeastern Minnesota. Preliminary analysis 
of these data suggests that during our study, 2013 was both the coldest and hottest year for moose in 
Minnesota. During summer 2013, some recorded temperatures exceeded 100°F and during winter of that same 
year, temperatures dropped to as low as -42°F. By the end of May, we will have data that will allow us to 
determine if ambient temperature and/ or land cover are influencing the chemical composition of forage in a 
way that alters palatability of different forage species, thereby influencing the diet composition estimates noted 
above. 
 
Final Report Summary:   
 
IV. Forage Quality and Forage Isotopes (Outcome 2.1) 
 
a) Quality of Forage Plants 
We collected plant samples at 131 sites (Figure 1.3) and found that plant species considered to be highly 
preferred by moose were indeed of higher quality, based on Carbon:Nitrogen ratios (C:N; lower is better) and 
%Nitrogen (%N; higher is better). The quality of forage varied spatially across moose range, with the area 
currently supporting the highest populations of moose (i.e., NW of Grand Marais) having the best combinations 
of C:N and %N (Figures 2.1 & 2.2); it is important to note that this area also has the highest forage biomass of all 
regions (Figure 1.5). 
 
Because of the strong gradient of ambient temperature seen across moose range (Figure 1.4), we also tested 
whether plant chemistry changed in response to temperature. Specifically, we examined how ambient 
temperature and canopy cover affected the production of plant secondary metabolites (PSMs), which include 
chemical defenses produced by plants (i.e., chemicals that could cause a moose to avoid an otherwise high-
quality plant). We compared common high and low quality forage plants in the B4Warmed experimental plots 
and also collected plant material from across the study area to explore how landscape-scale variation of abiotic 
conditions could impact the PSM profile of important forage plants.  
 
Plant secondary metabolites are a key mechanism by which plants defend themselves against potential threats, 
and changes in the abiotic environment can alter the diversity and abundance of PSMs. While the number of 
studies investigating the effects of abiotic factors on PSM production is growing, we currently have a limited 
understanding of how combinations of factors may influence PSM production. The objective of this portion of 
our study was to determine how ambient temperature influences PSM production and how the addition of 
other factors may modulate this effect. We used untargeted metabolomics to evaluate how PSM production in 
five different woody plant species in northern Minnesota are influenced by varying combinations of 
temperature, moisture, and light in both experimental and natural conditions. We used perMANOVA to 
compare PSM profiles and phytochemical turnover across treatments and NMDS to visualize treatment-specific 
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changes in PSM profiles. Finally, we used linear mixed-effects models to examine changes in phytochemical 
richness. 
 
Under closed-canopy, experimental warming led to distinct PSM profiles and induced phytochemical turnover in 
paper birch but not balsam fir (Figure 2.3). In open-canopy sites, warming had no influence on PSM production 
(Figure 2.4). In samples collected across northeastern Minnesota, regional temperature differences had no 
influence on PSM profiles or phytochemical richness but did induce phytochemical turnover in two important 
moose foods: paper birch and trembling aspen (Figure 2.5); however, warmer temperatures combined with 
open canopy resulted in distinct PSM profiles for all species and induced phytochemical turnover in all but 
beaked hazel. Our results demonstrate that woody plants do alter the chemicals they produce in response to 
abiotic factors; however, different species respond in different ways. Importantly, it seems that canopy cover 
can modulate the impact of temperature on PSM production—this could have implications on moose diet given 
the changing patterns of land cover observed in Activity 1. Because the impact of changing PSM profiles on 
moose is not known, future research that investigates the chemistry of browsed vs. non-browsed plants in 
different parts of moose range will be important and will help to explain the differences in diet that we have 
observed in this project (Outcome 2.2). The results from this research were published in Frontiers in Plant 
Science (Berini et al. 2018, in press). 
 
b) Stable isotopic composition of forage plants 
 
After combining our forage species into preference groups (low, medium, high), we were able to reliably 
separate them using stable isotope compositions measured as δ15N and δ13C (i.e., the composition of nitrogen 
and carbon isotopes; Figure 2.6); all pair-wise comparisons are significantly different for δ13C (Table 2.1) and 
δ15N (Table 2.2). Statistically significant differences in δ13C and δ15N between forage preference groups indicate 
that these groups can be used to reliably estimate diet composition (Outcome 2.2).  
 
To determine how isotopic composition of forage plants changed across the region, we collected data on 10 
landscape variables at all biomass and forage collection points (Figure 1.3) using the geographic information 
system (GIS) software ArcGIS 10.3. The variables we considered in these analyses are mean maximum summer 
temperature (1981-2010; PRISM Climate Group), elevation (U.S. Geological Survey), aspect, slope, disturbance 
type, percent canopy cover, canopy height, bedrock geology, and water table depth. To evaluate how stable 
isotope composition of different forage preference groups vary over the landscape, we created linear mixed-
effects models in Program R using the lmer command from the lme4 package. We created a null model for both 
δ13C and δ15N, with easting and northing as our fixed effects and land cover, disturbance type, and bedrock type 
as our random effects. The fit of our model characterizing landscape-level variation in δ13C was significantly 
improved by the inclusion of slope, water table depth, elevation, and mean-maximum summer temperature. 
The fit of our model characterizing landscape variation in δ15N was significantly improved by the inclusion of 
water table depth, slope, and elevation. After fitting these models to our data, we created landscape-level 
predictions using regression kriging to illustrate how the isotope values vary across northeastern Minnesota 
(Figure 2.7).  
 
Table 2.1 Results of Tukey’s HSD test for δ13C of forage preference groups based on Peek (1976). 
“Difference” refers to the difference between the observed means, whereas “lower” and “upper” refer 
to the endpoints of the interval. P-values were adjusted for multiple comparisons. 
 
group 
comparison 

difference lower upper p-value 

high-aquatics -1.643 -2.060 -1.226 < 0.0001 
low-aquatics -2.675 -3.082 -2.268 < 0.0001 
mid-aquatics -2.006 -2.431 -1.580 < 0.0001 
low-high -1.032 -1.212 -0.852 < 0.0001 
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mid-high -0.363 -0.581 -0.145 0.0001 
mid-low 0.670 0.472 0.867 < 0.0001 
 
Table 2.2 Results of Tukey’s HSD test for δ15N of forage preference groups based on Peek (1976). 
“Difference” refers to the difference between the observed means, whereas “lower” and “upper” refer 
to the endpoints of the interval. P-values were adjusted for multiple comparisons.  
 
group 
comparison 

difference lower upper p-value 

high-aquatics -2.589 -3.168 -2.011 < 0.0001 
low-aquatics -3.707 -4.272 -3.143 < 0.0001 
mid-aquatics -4.392 -4.982 -3.803 < 0.0001 
low-high -1.118 -1.368 -0.868 < 0.0001 
mid-high -1.803 -2.105 -1.501 < 0.0001 
mid-low -0.685 -0.959 -1.411 < 0.0001 
 
 
V. Moose diet (Outcome 2.2) 
 
To determine how moose diet changes through the growing season and across moose range, we analyzed the 
stable isotope data from samples of forage plants and moose hair. The plant samples were collected from 
throughout northeast Minnesota for five consecutive summers (2012-2016; Outcome 2.1) and the moose hair 
was collected by the Minnesota Department of Natural Resources at radio collaring events from 2013-2014 and 
at necropsies. Moose shed their winter coat as new hair growth begins in mid to late May and hair growth ends 
in late August to early September. Because of this seasonal renewal and growth pattern, stable isotopes in hair 
reflect that of the forage consumed during the summer period—the most important time of food consumption 
for moose. Thus, hairs collected from fall through early spring allow us to estimate the diet of individual moose 
during the previous summer. We segmented each hair sample into early summer (the tips of the hair) and late 
summer (the base of the hair) segments and used stable isotope data from these different segments to estimate 
seasonal differences in diet.  
 
To estimate diet, we created Bayesian mixings models in Program R using the package MixSIAR, which allowed 
us to estimate the diet for each individual. We found that early summer diets in the cold region were dominated 
by medium preference forage, while diets in the moderate and warm regions were dominated by low 
preference forage and aquatic forage, respectively (Figure 2.8 a). Late summer diets showed that moose in the 
cold region still focused more on medium preference forage, while the moderate and warm regions had 
progressively more aquatic forage in their diet (Figure 2.8 b). To test whether diet reflected habitat use we 
tested whether proportion of aquatic forage in the diet was influenced by the amount of time a given animal 
spent in wetland habitat. We found a significant, positive relationship, with animals in the warm region tending 
to have both higher use of wetland habitats and more aquatic plants in their diet (Figure 2.9). In general, animals 
in the warm region showed stronger selection for aquatic habitats (i.e., they were using them proportionally 
more than expected, based on wetland availability in their home ranges; Figure 2.10). 
 
 
VI. Impacts of moose diet on survival (Outcome 2.3) 
 
To determine if summer diet composition was related to the survival of individual moose, we used logistic 
regression to examine how the summer diet of animals that lived through the following year (n=124) compared 
to the diets of animals that died before the next summer (n=34). Because of the small number of mortalities, we 
could not draw robust conclusions; however, our initial analyses indicate that animals that died tended to eat 
more low-quality forage early in the summer, but less high-quality and more aquatic forage later in the summer 
(e.g., Figure 2.11). Although these results are tentative, we feel that they may help drive future research into 
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whether changes in diet can lead to mortality, or whether those changes are indicative of health complications 
that cause the animals to die in the following season.  
 
 
 
VII. Management recommendations (Outcome 2.4) 
 
Based on the findings of this study, we suggest that wildlife researchers at state, federal, and tribal agencies 
work with foresters in the public and private sectors to identify large blocks of moose range that can be 
experimentally manipulated or opportunistically monitored. Specifically, there should be paired blocks 
(treatment / control) that have similar initial conditions in which moose density will be monitored for 1-2 years 
prior to treatment. If additional radio collars cannot be added to animals in these blocks, the research area can 
be restricted to locations with existing data on moose space use; in this case, future moose density estimates 
would have to be conducted by a combination of aerial surveys, pellet counts, browsing surveys, and possibly 
camera trap grids.  
 
The main cover types to manipulate in treatment plots would be large deciduous and coniferous forest stands. 
Managing these stands to increase the conversion to a more heterogeneous mixture of tree species will involve 
selective cutting and possibly planting of trees. While conversion to a true mixed-wood stand will take decades, 
opening the canopy of some of these stands should increase the density of high-quality forage species 
(especially aspen and birch) in the understory. Food quantity and quality should be monitored along with the 
browsing intensity of these plots. Because some moose habitat plots have already been created by researchers 
in the state, we suggest that those plots be included as reference plots for this research. Other research plots 
should be created in areas with higher moose populations (e.g., NE portion of moose range) as well as 
historically moderate densities (e.g., around Isabella, NW of Ely; Figure 1.9). The goal of this management should 
be twofold: 1) can manipulations create fine-scale increases in habitat use by moose, and 2) at a broad scale, can 
these manipulations increase the moose population or make it more resilient to changes in predator densities, 
deer densities, or climate. Clearly it will be difficult to create such a long-term monitoring plan; however, if the 
timber harvesting can fit within existing forestry goals, then the monitoring of moose densities and forage could 
be managed on a marginal budget and also provide training for wildlife and forestry students at MN Universities. 
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Figure 2.1. Variation in C:N across northeast Minnesota for low (a), medium (b), and high preference (c) 
forage. Landscape-level predictions were derived via regression kriging using linear mixed effects 
models. The C:N decrease from low to high preference, indicating an increase in nutrient quality. 
 
  

a) 

b) 

c) 
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Figure 2.2. Variation in %N across northeast Minnesota for low (a), medium (b), and high preference (c) 
forage. Landscape-level predictions were derived via regression kriging using linear mixed effects 
models. The %N values increase from low to high preference, indicating an increase in nutrient quality. 
 
  

a) 

b) 

c) 
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Figure 2.3 Non-Metric Multidimensional Scaling (NMDS) plots detailing the influence of moderate and 
high-temperature stress on PSM profiles of balsam fir (a) and paper birch (b) in closed overstory. Ellipses 
represent 95% confidence intervals, based on standard error. In balsam fir (a), both warming treatments 
exhibit less overlap with each other than with ambient. In paper birch (b), different temperature 
conditions lead to distinct profiles when compared to each other and ambient. 
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Figure 2.4 Non-Metric Multidimensional Scaling (NMDS) plots detailing the influence of temperature and 
drought on PSM profiles of balsam fir (a), red maple (b), paper birch (c), and trembling aspen (d) in 
open overstory. Ellipses represent 95% confidence intervals, based on standard error. There appears to 
be no discernible pattern between stress conditions and PSM profiles, regardless of species.   
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Figure 2.5 Non-Metric Multidimensional Scaling (NMDS) plots detailing the influence of light and 
temperature stress on PSM profiles of balsam fir (a), paper birch (b), beaked hazel (c), and trembling 
aspen (d). Ellipses represent 95% confidence intervals, based on standard error. Each species appears 
to respond to different abiotic conditions in a unique manner. Balsam fir (a) appears to create unique 
PSM profiles as a function of high light when compared to our reference group (low-light, low-
temperature), while paper birch (b) and trembling aspen(d) appear to have distinct PSM profiles for 
each condition. Beaked hazel (c) exhibits no discernible pattern.   
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Figure 2.6 Bi-plot representing the mean (points) and standard deviation (lines) of δ13C and δ15N for 
each forage-preference group. Sample sizes are presented in the legend. Standards used for verifying 
machine accuracy were air for δ15N and Vienne Pee Dee Belemnite (VPDB) for δ13C.  
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Figure 2.7 Distribution of δ13C and δ15N across NE Minnesota for all three moose forage preference groups. 
Landscape-level predictions were derived via regression kriging using linear mixed effects models. 
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Figure 2.8 Early (a) and late summer (b) diet compositions of moose that survived or died in the 
following winter. Diets derived from the terminal (early summer) and basal (late summer) portions of hair 
collected at capture or after mortality. 
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Figure 2.9 Scatterplot and regression of how the summer use of wetlands by moose in each of the three 
temperature regions is related to the estimated proportion of aquatic for age in the animals' early-
summer diet.   
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Figure 2.10 Scatterplot of how use of wetlands during summer by moose in the three temperature 
regions is related to the availability of wetlands within their home ranges. Moose in the warm region 
tended to select for wetlands (i.e., they used them in a higher proportion than they were available). The 
dotted line is the 1:1 line; points above that line represent animals that are using wetlands in a greater 
proportion than available. 
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Figure 2.11.  Violin plots of late summer, high-preference food in the diet of moose that lived through the 
winter (n=124) compared to those that died (n=34). The dead animals tended have less high-
preference forage in their late-summer diets. More research is needed because of the small sample size 
of dead animals. 

 
 
V. DISSEMINATION: 
 
Description: A fact sheet that summarizes our findings will be distributed to LCCMR members and land 
managers at the state and federal level; this will also be made available on the UMN Department of Fisheries, 
Wildlife, and Conservation Biology website. In addition, several manuscripts will be written and submitted for 
publication in peer-reviewed journals. Results will be presented at state and national wildlife and ecology 
conferences (e.g., the annual Minnesota Moose Meeting, The Wildlife Society [both state and national 
conferences], the Ecological Society of America, and the International Association of Landscape Ecology). All 
publications resulting from this project will be made available through the FWCB website or Open Access journal 
websites. 
 
We also expect that there will be a large amount of informal dissemination because we will be working closely 
with researchers and managers from the Department of Natural Resources, The Nature Conservancy, the Grand 
Portage Band of Lake Superior Chippewa, the National Park Service, and the US Forest Service. These 
researchers will take the results of our study into consideration as they make management decisions and will 
work with us to ensure that our data products and research papers reach a broad audience within their 
agencies. 
 
Finally, we will continue to pursue public outreach through the Bell Museum of Natural History at UM, which 
brings University research to the public onsite within the BMNH and offsite through community venues, 
traveling exhibits, and film productions. We will continue to collaborate with them to develop a unique learning 
environment that integrates interactive media that presents our on-going research with the existing detail-rich 
and aesthetically compelling traditional diorama in the BMNH. The decline of moose in Minnesota is of 
significant public interest, and we expect the presentation of this research to improve public understanding of 
both the scientific process and the state of this iconic species. 
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Status as of 2 December 2014:    
Forester has given two seminars on the moose population analysis  (one to students visiting from Norway, and 
another to prospective UMN students). Another public seminar is planned for mid December. Forester also gave 
an extended interview about the moose population to the “Access Minnesota” radio show produced by the 
Minnesota Broadcasters Association (mid July air date). 
 
Status as of 31 May 2015:    
Forester presented at the Annual North American Moose Conference in Granby, CO and gave one public seminar 
in the Conservation Biology seminar series at the University of Minnesota. Graduate student John Berini 
presented at a UMN research symposium.  Forester continues to work closely with researchers from the 
MNDNR and Grand Portage Band. Three manuscripts are in the initial stages of drafting. Forester worked with a 
UROP student at UMN to examine the spatial variation of stable isotope values in paper birch (an important 
moose food species).  
 
Status as of 31 January 2016:    
Berini, Street, and Forester all presented at the Annual Conference of The Wildlife Society in Winnipeg , MB 
Canada. Forester also gave an invited seminar to the American Association of University Women in Minneapolis, 
MN. One manuscript is in press, another was submitted for publication and is currently under revision, and a 
third is in the final stages of drafting. 
 
Street, G. M., J. Fieberg, A. R. Rodgers, M. Carstensen, R. Moen, S. A. Moore, S. K. Windels, and J. D. Forester. 

2016. Habitat functional response mitigates reduced foraging opportunity: implications for animal 
fitness and space use. Landscape Ecology – In Press. 

 
 
Status as of 31 May 2016:    
Forester presented the preliminary results from this research at “A Sip of Science” in Minneapolis. A UMN RAP 
student we work with presented the results of her study (how moose diet changes across NE MN) at the 2016 
UMN Undergraduate Research Symposium. John Berini gave a guest lecture on this material for the Principles of 
Conservation Biology class at UMN and also presented at the Conservation Biology Research Spotlight. We plan 
to resubmit our manuscript on secondary compounds in moose forage species within the next few weeks and 
will submit a manuscript on spatially-explicit changes to the moose population by mid summer.  
 
 
Status as of 1 May 2017:    
Forester presented results to a visiting group of students and scholars from Norway in September 2016. He also 
presented at the International Association of Landscape Ecology conference in Baltimore, MD (April 2017) and 
will be presenting at the International Congress for Conservation Biology in Cartagena, Colombia in July 2017. 
Two manuscripts are in revision for submission to journals. 
 
 
Final Report Summary: 
 
Forester contributed to a multimedia display associated with the moose diorama in the Bell Museum 
(https://z.umn.edu/BellMoose); an excerpt of this interview was featured in the recent PBS special, “Windows 
to Nature” (https://z.umn.edu/Windows2Nature). Forester also gave an extensive interview on the moose 
population for “Access Minnesota” (https://z.umn.edu/mooseradio), presented seven invited talks (UMN 
Conservation Biology Seminar Series, 2014 & 2017; Minnesota Moose Symposium, 2015; American Association 

https://z.umn.edu/BellMoose
https://z.umn.edu/Windows2Nature
https://z.umn.edu/mooseradio
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of University of Minnesota Women, 2015; A Sip of Science, 2016; Boise State University, 2017; Universidade 
Federal de Mato Grosso do Sul, Brazil 2018), contributed talks to five national or international scientific 
conferences (North American Moose Conference, Colorado 2015; The Wildlife Society, Winnepeg 2015; US-IALE, 
Baltimore 2017 & Chicago 2018; International Convention for Conservation Biology, Colombia 2017). John Berini 
(Ph.D. student) contributed talks to one national (American Society of Mammalogists, Minneapolis 2016) and 
one international scientific conference (The Wildlife Society, Winnepeg 2015), as well as at two UMN research 
symposia. Both Forester and Berini included aspects of this research into teaching materials that were delivered 
to undergraduate students in Wildlife and Conservation Biology courses. Garrett Street also presented at one 
conference (TWS Winnepeg  2015). Throughout the course of this project, we provided mentorship and training 
in field, laboratory, and quantitative methods to 12 undergraduate students, five graduate students, and three 
postdoctoral scholars. Three manuscripts have been published as part of this project: 
 
Street, G. M., J. Fieberg, A. R. Rodgers, M. Carstensen, R. Moen, S. A. Moore, S. K. Windels, and J. D. Forester. 
2016. Habitat functional response mitigates reduced foraging opportunity: implications for animal fitness and 
space use. Landscape Ecology 31:1939-1953 doi:10.1007/s10980-016-0372-z. 
 
Fieberg, J. R., J. D. Forester, G. M. Street, D. H. Johnson, A. A. ArchMiller, and J. Matthiopoulos. 2017. Used-
habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-
selection models. Ecography (in press)  doi:10.1111/ecog.03123. 
 
Berini, J. L., S. Brockman, A. Hegeman, R. Muthukrishnan, P. B. Reich, R. Montgomery, J. D. Forester. 

Combinations of abiotic factors differentially alter production of PSMs in woody plants along the boreal-
temperate ecotone. Frontiers in Plant Science (in press). 

 
 
 
  
 
VI. PROJECT BUDGET SUMMARY:   
 
A. ENRTF Budget Overview: 

Budget Category $ Amount Explanation 
Personnel: $ 150,969 1 project manager at 8%FTE for 3y; 1 field 

manager at 38% FTE for 3y; 1 lab manager at 4% 
FTE for 3 y;1 lab technician at 8% FTE for 3 y; 1 
research associate at 6% FTE for 1 y; 2 
undergraduate research assistants at 19%FTE 
for 3y; 1 PhD student at 14% FTE for 3y. 

Professional/Technical/Service Contracts: $ 83,944 1 contract for laboratory analysis of plant and 
tissue samples; 2 contracts for satellite imagery 
analysis. 

Equipment/Tools/Supplies: $ 9,980 Lab supplies for stable isotope analysis; field 
equipment (tapes, sample bags, etc)  

Capital Expenditures over $5,000: $ 5,845 High precision GPS for relocating sites and 
individual plants for resampling. 

Fee Title Acquisition: $ 0  
Easement Acquisition: $ 0  
Easement – Long-term Monitoring, 
Management, and Enforcement 

$ 0  

Professional Services for Fee Title and $ 0  



44 
 
 

Easement Acquisition: 
Printing: $ 0  
Travel Expenses in MN: $ 49,262 Travel to study area by staff and technicians (1 

fleet truck for 4mo/y over 3y); lodging and 
meals for 2-6 crew members for 4mo/y over 3y. 

Other: $  
TOTAL ENRTF BUDGET: $ 300,000  

 
Explanation of Use of Classified Staff:   
 
Explanation of Capital Expenditures Greater Than $5,000:  One Trimble GeoExplorerXT will be purchased for 
high-resolution field sampling and ground-truthing of satellite classifications. The instrument will continue to be 
used for similar projects and purposes by the Forester Lab at UMN for the life of the instrument. If the 
instrument is sold prior to its useful life, proceeds from the sale will be paid back to the Environment and 
Natural Resources Trust Fund. 
 
Number of Full-time Equivalents (FTE) Directly Funded with this ENRTF Appropriation:  2.98 FTEs 
 
Number of Full-time Equivalents (FTE) Estimated to Be Funded through Contracts with this ENRTF 
Appropriation: 0.5 FTEs 
 
B. Other Funds: 

Source of Funds 
$ Amount 
Proposed 

$ Amount 
Spent Use of Other Funds 

Non-state     
 $ 0 $ 0  
State    
Purchase and maintenance of 15 
moose GPS collars  (Forester 
startup) 
 

$89,463  
 

$ 50,000 Data from these collars will provide the 
critical data for this project. We will be 
able to link where animals spend their 
time to what they are eating and 
subsequently their body condition. 

Graduate Lab Manager (Fox 
Stable Isotope Lab, 1mo summer 
salary + 23.1% health and FICA) 
 

$2,400  
 

$ 0 This lab manager will help with the 
analysis of our samples 

Computer equipment dedicated 
to data analysis and simulation 
for this project (Forester startup) 
 

$5,558  
 

$ 5,558 These computers will provide the 
computational power to fit the statistical 
models we will develop in this project. 

Foregone ICR funding (52% 
MTDC, excluding graduate 
fringe) 
 

$153,770 $ 0  

In-kind Services During Project 
Period: Salaries for Forester (1% 
match), D'Amato (1% match) 
 

$6,550  
 

$ 0 The PIs will be spending substantial time 
organizing the crews, analyzing data and 
writing up manuscripts and reports. 

TOTAL OTHER FUNDS: $ 257,741 $ 50,000  
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VII. PROJECT STRATEGY:  

A. Project Partners:    

The research team will be led by scientists at the University of Minnesota Departments of Fisheries, Wildlife and 
Conservation Biology (Dr. James Forester), Earth Sciences (Dr. David Fox), and Forest Resources (Dr. Anthony 
D’Amato). 

Partners include the UMN (Dr. Alan Ek), MNDNR (Dr. Michelle Carstensen, Dr. Glenn DelGiudice), TNC (Mark 
White), and the Grand Portage Band of Lake Superior Chippewa (Dr. Seth Moore). 

B. Project Impact and Long-term Strategy:   

Opportunities to gain insight into the spatial structure of population demographic rates are rare. The proposed 
work builds on moose research by the MNDNR to examine how this species (of local economic and cultural 
importance) is responding to changing landscapes. This study will directly address questions of management 
concern and will also advance managers’ understanding of (1) how animals behaviorally mitigate environmental 
stress; (2) how behavior and landscape context affect diet, survival, and fecundity; and (3) how broad-scale 
landscape structure can affect the space use and demographic rates of the moose population. Our ongoing 
collaborations with state, tribal, and federal agencies will ensure that the research results are broadly 
disseminated. Likewise, our interaction with the Bell Museum will expose the public to our ongoing efforts to 
manage and conserve moose in Minnesota. 

C. Spending History:  
Funding Source M.L. 2008 

or 
FY09 

M.L. 2009 
or 

FY10 

M.L. 2010 
or 

FY11 

M.L. 2011 
or 

FY12-13 

M.L. 2013 
or 

FY14 
Forester startup funds   52,500 3,058  
      
      
      
 
VIII. ACQUISITION/RESTORATION LIST: N/A 
 
IX. VISUAL ELEMENT or MAP(S):  
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X. ACQUISITION/RESTORATION REQUIREMENTS WORKSHEET: N/A 
 
XI. RESEARCH ADDENDUM: 
See attached Research Addendum 
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XII. REPORTING REQUIREMENTS: 
Periodic work plan status update reports will be submitted no later than 2 December 2014, 31 May 2015, 31 
January 2016, 31 May 2016, 31 January 2017, and 30 June 2017.  A final report and associated products will be 
submitted between June 30 and August 15, 2017. 
 



       

Figure 1. Moose can suffer in the summer heat, run out of food in the winter, fall prey to wolves, or 
succumb to parasites or disease. The distribution of high-quality food and cover can affect how 
susceptible animals are to these threats. We found that: 1) the landscape composition of moose 
range has changed over 18 years, with mature coniferous forest becoming more dominant, 2)  
local moose populations had higher growth rates in cooler areas that had large amounts of 
mixedwood and young forests, and  3) although diets of moose varied across the range, animals 
that died tended to have eaten less high-quality forage in the previous summer. We suggest that 
these results be experimentally tested by observing moose behavior and population dynamics in 
large-scale forest manipulations where the amount of mixedwood and young aspen/birch stands 
are controlled and the quality and composition of forage species in the understory is monitored. 



Environment and Natural Resources Trust Fund
M.L. 2014 Project Budget

Project Title: Impacts of forest quality on declining Minnesota moose.
Legal Citation: M.L. 2014, Chp. 226, Sec. 2, Subd. 05l and Date of Work Plan Approval: June 4, 2014
Project Manager: James Forester
Organization: University of Minnesota
M.L. 2014 ENRTF Appropriation:  $ 300,000
Project Length and Completion Date: 3 years, 30 June 2017
Date of Report: 2018-08-31

ENVIRONMENT AND NATURAL RESOURCES TRUST 
FUND BUDGET

Revised Activity 1 Budget 
5/01/2017

Amount 
Spent

Activity 1
Balance

Revised Activity 2 
Budget 5/01/2017

Amount 
Spent

Activity 2
Balance

TOTAL 
BUDGET

TOTAL
BALANCE

BUDGET ITEM

Personnel (Wages and Benefits) $134,056 $111,473 $22,583 $89,728 $89,728 $0 $223,784 $22,583
Field manager - $23,242 (79% salary, 21% benefits);  38% FTE for 
two years; will lead vegetation sampling effort.
Faculty (Forester) - $40,287 (66.2% salary, 33.8% fringe); 8% FTE 
for four years; will manage project, and lead analysis of moose 
movement data.
Faculty (Fox) - $15,664 (84% salary, 16% benefits); 4% FTE for 
three years; will supervise the stable isotope analyses
Lab technician - $13,076 (73% salary, 27% benefits);  8% FTE for 
three years; will maintain stable isotope lab equipment and assist 
with analyses.
Research Associate (David Wilson) - $3,769 (73% salary, 27% 
benefits);  6% FTE for one year; will take lead on collecting and 
analyzing the FIA data for the moose range.
Undergraduate research assistants - $24,340 (100% salary);  2 x 
19% FTE over 3 yr; will aid graduate student, field manager, and lab 
technician with data collection and entry.
Postdoctoral scholar (Garrett Street) 31,231 (81% salary, 19% fringe) 
100% FTE over second 6 months, will compile moose movement 
data and begin initial habitat-use anlaysis.
Postdoctoral scholar (Althea ArchMiller) 18,721(81% salary, 19% 
fringe) 100% FTE over last 3 months, will analyze habitat data and 
develop population model

GIS Technicians (in Falkowski lab, UMN Forest Resources, $15,00) 
will classify historic and current satellite imagery. 

PhD student (John Berini) $19,124 (86% salary, 14% benefits); 14% 
FTE over first year, 50% FTE over last six months; will collect plants 
for stable isotope analysis within animal home ranges, will collect 
moose browse, hair, and fecal pellets during winter, and will take 
lead on the analysis of moose isotope concentrations.
PhD student (Andrew Herberg) $2,340.18 (49% salary, 51% tuition 
and benefits); 50% FTE for one month; will analyze activity data of 
moose to predict how foraging behavior changes in different 
landscapes.

MS student (Amrit Shandilya) $16,989 (49% salary, 51% tuition and 
benefits); 50% FTE last six months; will develop computer program 
to predict locations of moose under changing landscapes.
Professional/Technical/Service Contracts
Isotope analysis (University of Minnesota Stable Isotope Lab)  - 
$8,963; 956 samples of moose and plant tissue at $9/sample

$8,963 $8,963 $0 $8,963 $0

Isotope analysis (Santa Cruz Stable Isotope Lab)  - $27,894; 2376 
samples of plant tissue at $11.74/sample

$27,894 $27,894 $0 $27,894 $0

Chemical composition analysis of plant samples (UMN 
Metabolomics Lab $15,000)

$15,000 $15,000 $0 $15,000 $0

Development of a 2014 moose-specific habitat classification by 
combining LiDAR and LANDSAT data (Knight lab $5000)

$5,000 $5,000 $0 $0 $0 $5,000 $0

Equipment/Tools/Supplies
Lab supplies (reagents, weigh tins, gas canisters, and other 
consumable supplies used for stable isotope analysis) - $2,769

$2,769 $2,769 $0 $2,769 $0

field equipment (measuring tapes, compasses, flagging tape, 
sample bags, stakes, etc) - $980

$600 $600 $0 $380 $380 $0 $980 $0

Map-grade GPS unit for precise location of field samples and 
accurate ground truthing of satellite imagery $5,845

$5,845 $5,845 $0 $5,845 $0

Travel expenses in Minnesota

Travel to study area by project management staff and 
technicians 4 months/yr for 3 years (1 fleet truck 
@$779/month, $0.37/mi, 7000 miles/ yr) - $17,040

$255 $255 $0 $6,923 $6,923 $0 $7,178 $0

Room and board for field crew (3 yr of summer and winter 
field sessions, 4 months/yr, 2-6 crew members at a time, 
lodging @ $1,500/mo, meals @ $1,185/mo) - $32,222

$1,000 $1,000 $0 $1,584 $1,584 $0 $2,584 $0

COLUMN TOTAL $140,911 $118,328 $22,583 $159,086 $159,086 $0 $299,997 $22,583

Linking moose abundance to broad-scale distributions of 
food and cover that change across space and through time.

Linking the distribution and quality of food and 
cover to moose diet, body condition and mortality 
risk.
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‘Species distribution modeling’ was recently ranked as one of the top five ‘research 
fronts’ in ecology and the environmental sciences by ISI’s Essential Science Indicators, 
reflecting the importance of predicting how species distributions will respond to 
anthropogenic change. Unfortunately, species distribution models (SDMs) often 
perform poorly when applied to novel environments. Compounding on this problem 
is the shortage of methods for evaluating SDMs (hence, we may be getting our 
predictions wrong and not even know it). Traditional methods for validating SDMs 
quantify a model’s ability to classify locations as used or unused. Instead, we propose to 
focus on how well SDMs can predict the characteristics of used locations. This subtle 
shift in viewpoint leads to a more natural and informative evaluation and validation 
of models across the entire spectrum of SDMs. Through a series of examples, we 
show how simple graphical methods can help with three fundamental challenges of 
habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. 
Identifying habitat characteristics that are not well-predicted by the model can provide 
insights into variables affecting the distribution of species, suggest appropriate model 
modifications, and ultimately improve the reliability and generality of conservation 
and management recommendations.

Introduction

A variety of data collection and statistical methods are available for linking individuals, 
populations, and species to the habitats they occupy. Data collection methods range 
from design-based or opportunistic surveys that result in a set of pooled locations 
(ignoring any temporal component) (Edwards et al. 2006, Skov et al. 2016) to telem-
etry studies that result in many locations over time for a small number of individuals 
(Boyce and McDonald 1999, Pearce and Boyce 2006). A growing number of methods 
have been proposed for analyzing these different data types, and ‘species distribution 
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modeling’ (SDM) was recently ranked as one of the top five 
‘research fronts’ in ecology and the environmental sciences by 
ISI’s Essential Science Indicators (Renner and Warton 2013). 
Regardless of the method used, the underlying objectives 
are the same: to understand how resources, risks, and envi-
ronmental conditions influence distribution and abundance 
patterns (Mayor et al. 2009, Matthiopoulos et al. 2015). A 
more challenging, but equally important goal is to infer how 
various perturbations, including climate change and habitat 
management actions, influence these patterns (Matthiopou-
los et  al. 2011, Renner and Warton 2013). Unfortunately, 
SDMs frequently perform poorly when applied to novel 
environments (Elith et al. 2010, Matthiopoulos et al. 2011, 
Heikkinen et al. 2012, Wenger and Olden 2012). If we are 
going to use models to inform decision making, we need to 
have confidence in their predictions, which in turn requires 
that we have appropriate methods for model evaluation. 
Importantly, methods that provide insights into why a model 
performs poorly (e.g. missing predictors, incorrect functional 
form, multicollinearity) are more useful than methods that 
provide only an overall measure of fit.

Much recent literature on model evaluation has focused 
on the interrelated concepts of model validation, calibration, 
and discrimination (Pearce and Ferrier 2000, Phillips and 
Elith 2010, Steyerberg et al. 2010, Harrell 2013, Chivers et al. 
2014). Model validation is the process of assessing agreement 
between observations and fitted or predicted values. When a 
model (or set of models) is chosen via a data-driven process 
(e.g. transformations are considered, outliers are inspected 
and potentially dropped, and multiple models are compared 
before one or more are selected for inference), evaluations 
should ideally use out-of-sample data (i.e. data not used 
to arrive at the model(s); Araújo et al. 2005, Harrell 2013, 
Muscarella et  al. 2014, Naimi and Araújo 2016). The use 
of out-of-sample data is also critical when evaluating model 
transferability and is especially challenging if the explana-
tory variables are correlated among themselves. Prediction 
error will typically be greater with the new data set unless 
the correlation among explanatory variables is the same as 
in the data originally used for model fitting (Dormann et al. 
2013). When there is close agreement between observed and 
fitted/predicted values, we say the model is well calibrated; 
calibration therefore refers to steps taken to improve agree-
ment between observed and predicted values (e.g. one may 
choose to ‘shrink’ regression parameters towards zero to 
improve out-of-sample predictions when models have been 
overfit; Harrell 2013, Street et al. 2016). Discrimination, by 
contrast, describes a model’s ability to rank sample units in 
terms of their likely outcomes (Fielding and Bell 1997, Pearce 
and Ferrier 2000, Fawcett 2006, Steyerberg et al. 2010).

Calibration and discrimination often go hand-in-hand, 
though this need not be the case. A model may be well-cal-
ibrated but fail to discriminate well if it gives unbiased but 
highly imprecise estimates. A nice exemplification is given 
by Ellner et al. (2002), who demonstrated that estimates of 
extinction probabilities from population dynamic models 

are frequently too imprecise to rank individual populations 
in terms of risk even though they may provide an accurate 
estimate of the proportion of populations that will cross a 
quasi-extinction threshold. Conversely, a model may be 
poorly calibrated, yet have strong discriminating capabili-
ties (Phillips and Elith 2010, Jiménez-Valverde et al. 2013). 
For instance, population indices may accurately rank sites 
in terms of their abundance, provided variation in detec-
tion probabilities is small relative to variation in abundance, 
even though indices are biased estimators of population size 
(Johnson 2008). Researchers routinely use methods such as 
the area under the receiver operating curve (AUC) to evaluate 
discrimination of SDMs (Meyer and Thuiller 2006, Heikki-
nen et al. 2012, Jiménez-Valverde 2012), whereas calibration 
methods, the focus of this paper, are equally important but 
underutilized (Phillips and Elith 2010).

We consider methods for validating two general classes of 
models. The first includes a variety of methods appropriate 
for survey data pooled over time, in which observed loca-
tions are compared to a set of ‘background’ (or ‘control’ or 
‘available’) locations generated by randomly or systematically 
sampling from an area that encompasses the observed loca-
tions. Effectively, this approach treats the data as if they were 
cross-sectional (i.e. the temporal information in the data is 
ignored when making inferences). Animal telemetry data are 
also often analyzed in this way, particularly when locations 
are collected infrequently or if the researcher is interested in 
habitat use at broad spatial scales (e.g. second or third orders 
of selection; Johnson 1980). Parallel development of meth-
ods for survey data and telemetry data has led to slightly dif-
ferent nomenclatures. The combination of the observed and 
background points is typically referred to as either presence-
background (survey data) or use-availability (telemetry) data 
and the fitted models as either species distribution models 
(survey data) or habitat- or resource-selection functions or 
models (telemetry data). Though a variety of modeling 
approaches have been used in this context, most – MaxEnt 
(Elith et al. 2011), spatial logistic regression (Baddeley et al. 
2010), weighted distribution theory with an exponential 
link function (Lele and Keim 2006), and resource utilization 
distributions (Millspaugh et al. 2006) – can be shown to be 
equivalent to fitting an inhomogeneous spatial point pro-
cess model (Warton and Shepherd 2010, Aarts et al. 2012, 
Fithian and Hastie 2013, Hooten et  al. 2013, Renner and 
Warton 2013).

The second class of models, developed for fine-scale 
telemetry data, also compares observed locations to a set of 
background points, but these background points are con-
strained to areas that are accessible to the animal from the 
previously observed location (a function of animal move-
ment characteristics and sampling frequency). Each observed 
location is ‘paired’ with a set of background/available points, 
resulting in highly stratified data. These data types are typi-
cally analyzed by fitting a conditional logistic regression (or 
equivalently, a discrete choice) model (Arthur et  al. 1996, 
Manly et al. 2002), and the fitted models are referred to as 
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step-selection functions (SSF) (Fortin et  al. 2005, Forester 
et al. 2009, Thurfjell et al. 2014) or integrated step-selection 
functions (Avgar et al. 2016). Although these two classes of 
models share some features, calibration techniques developed 
for presence–absence (Harrell 2013) or presence–background 
data (Boyce et  al. 2002, Johnson et  al. 2006, Phillips and 
Elith 2010) do not easily generalize to step-selection func-
tions because the data used to fit the latter models are highly 
stratified. Further, little work has been done to develop meth-
ods for validating step-selection models (but see Street et al. 
2016).

The popularity of SDMs, their propensity to fail when 
used to predict distributions in novel environments, and the 
current lack of sufficient diagnostics for evaluating models, 
especially those developed to analyze fine-scale telemetry 
data, are causes for concern. Here, we introduce a new 
method for model validation that can be applied across the 
entire spectrum of SDMs. Rather than focus on validating 
a binary response variable (Y  1 for presence locations and 
0 for background locations), we proposed to validate mod-
els by comparing distributions of the explanatory variables 
at the observed and predicted presence locations – i.e. the 
habitat characteristics associated with the used locations. 
These plots, which we refer to as used-habitat calibration 
plots or UHC plots, complement existing approaches for 
validating traditional (non-stratified) species distribution or 
habitat selection models and also fill a void by providing a 
way to validate step-selection functions. Through a series 
of simulated and empirical examples, we show how UHC 
plots can help with three fundamental challenges of habitat 
modeling: identifying missing covariates, non-linearity, and 
multicollinearity.

Pooled-survey data examples

We begin by considering two simple simulation examples 
where the variables influencing species distribution pat-
terns are known. These examples are useful for testing if 
model validation tools return sensible and informative results 
under known model misspecifications. In particular, we will 
use these examples to explore the ability of model valida-
tion tools to diagnose a missing predictor or the need for a 
non-linear term. To understand the data-generating process, 
let f  a(x) describe the available or background distribution 
of covariate(s) x in environmental space (i.e. f  a(x) gives the 
relative frequency with which different values or levels of x 
occur across the entire landscape). Further, let f  u(x) describe 
the distribution of the covariate(s) at used (i.e. presence) 
locations.

In our first example, constructed to explore the impact 
of a missing predictor, the species distribution was driven 
by elevation (x1) and precipitation (x2), with the species 
preferring sites at higher elevations and with lower levels 
of precipitation. In this example, the distribution of x1 and 
x2 in environmental space was assumed to be normal and 
centered to have mean 0: f  a(x1, x2)  N(0,Σ). We considered 

three different data-generating scenarios in which we set 
var(x1)  var(x2)  4, but varied cor(x1,x2)  ρx x1 2,  to explore 
how the effect of a missing predictor depends on the correla-
tion among predictor variables. In the first scenario, we set 
ρx x1 2

0, =  in both training and test data sets. In the second 
scenario, we set ρx x1 2

0 3, .= −  in both training and test data 
sets, and in the third scenario, we set ρx x1 2

0 3, .=  in the train-
ing data set and ρx x1 2

0 3, .= −  in the test data set. For each 
of these three scenarios, we formed training data by choos-
ing 100 presence locations, with the probability of selection 
proportional to exp (0.5x1–x2). We combined these locations 
with a set of 10 000 randomly generated background points 
from f  a(x1,x2). We set Y  1 for the 100 presence locations 
and Y  0 for the 10 000 background locations. We used the 
same approach to form a test data set of the same size (100 
presence and 10 000 background locations).

We fit two different logistic regression models to the 
training data. First, we fit a model that included only 
elevation. Second, we fit a model that included both eleva-
tion and precipitation (the correct model). The estimated 
regression coefficients for elevation and precipitation 
were close to the data-generating values of 0.5 and –1 
whenever we fit the correct model (i.e. y ~ elev  precip;  
Table 1). The coefficient for elevation was also close to the 
data-generating value of 0.5 if we fit the model without 
precipitation, provided ρx x1 2

0, .=  By contrast, the coeffi-
cient for elevation in the model without precipitation was 
too high when ρx x1 2

0 3, .= −  and too low when ρx x1 2
0 3, .=   

(Table 1). This type of bias, referred to as omitted-vari-
able bias, is well-known and is a function of cor(x1,x2) and 
cor(y,x2|x1) (Clarke 2005).

We considered a second example to explore the effect of 
model misspecification, where the species distribution exhibits 
a non-linear response to temperature (x3). The optimal tem-
perature for this species was set at x3  1, with habitat suit-
ability dropping off for warmer and colder temperatures. We 
again considered centered values of x3, assumed to be nor-
mally distributed on the landscape with f  a(x3)  N(0,4). We 
formed test and training data using the same approach as in 
the previous example, but with the probability of selecting 
locations proportional to exp( )2 3 3

2x x− .

Table 1. Estimated regression parameters ( β� ) and their standard 
errors (SE) for logistic regression models fit to training data in the first 
cross-sectional data simulation. The marginal distribution of 
elevation (x1) and precipitation (x2) on the landscape was given by a 
multivariate normal distribution with mean vector  (0,0), and 
var(x1)  var(x2)  4. We considered three different data-generating 
scenarios in which we varied cor(x1,x2) (  0, –0.3, or 0.3). The true 
species distribution was proportional to exp(0.5x1–x2).

Y~ elev Y~ elev  precip

cor(x1,x2) β� x1
SE β� x1

SE β� x 2 SE

0.00 0.42 0.05 0.42 0.06 –1.04 0.07
–0.30 0.80 0.06 0.52 0.06 –0.99 0.07
0.30 0.27 0.05 0.57 0.06 –0.97 0.06
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We fit a model with only a linear effect of temperature on 
the logit scale and another that also included a quadratic term 
(the correct model). The coefficient for temperature was too 
low when we fit the model with only temperature, but the 
coefficients were close to the data-generating values of 2 and 
–1 when both temperature and temperature2 were included 
in the model (Table 2).

In subsequent sections, we evaluate each model’s ability 
to predict presence locations in the test data. R code (R Core 
Team) for generating the data and performing all analyses 
in the paper, along with any associated output, have been 
archived within the Data Repository for the Univ. of Min-
nesota: < http://doi.org/10.13020/D6T590 > (Fieberg et al. 
2016). We have also included functions for simulating and 
analyzing these data in an R package named ‘uhcplots’ hosted 
on GitHub (Fieberg and ArchMiller 2016). This package 
can be downloaded using the install_github() function in 
the devtools library: devtools::install_github(“aaarchmiller/
uhcplots”).

Calibration plots

Methods for validating models include goodness-of-
fit tests, diagnostic plots to assess model assumptions 
(e.g. residual versus fitted plots), and calibration plots 
of observed versus predicted values, where the latter are 
formed using cross-validation or bootstrapping (Phil-
lips and Elith 2010, Harrell 2013). Calibration plots are 
particularly useful since they provide an honest measure 
of model fit by using different data sets to fit and then 
evaluate the model. Unfortunately, calibration plots have 
received relatively little attention in the species distribu-
tion literature (but see Phillips and Elith 2010). Because 
many ecologists are unfamiliar with calibration plots, we 
will work towards our suggested approach by first detail-
ing the steps necessary for producing a calibration plot 
when logistic regression is used to model binary (presence–
absence) data. We then describe how calibration plots have 
been modified to work with presence–background data 
and illustrate these methods in conjunction with the above 
simulated data examples. With this foundation in place, 
we develop an alternative method of model calibration 
that focuses on the distribution of habitat characteristics at 
locations where the species is present.

Calibration plot for presence–absence data

Let Y represent the presence or absence of a species, a Bernoulli 
random variable with mean that is dependent on covari-
ates X, E[Y|X]  P(Y  1|X)  p. Further, let (xtrain,ytrain) refer 
to predictor and response data, respectively, used to fit the 
model and (xtest,ytest) refer to predictor and response data used 
to validate model predictions. In real applications, test and 
training data may be formed by data splitting, using k -fold 
cross-validation (Muscarella et al. 2014), or by sampling data 
with replacement multiple times (i.e. separate bootstrap sam-
ples; Harrell 2013, Fieberg and Johnson 2015). Alternatively, 
the model may be validated with data collected at another 
point in time or space, leading to a more stringent test of a 
model’s predictive ability. To produce a calibration plot with 
presence–absence data:

1) Estimate regression parameters, β�
train , by fitting a logis-

tic regression model to the training data (xtrain,ytrain).
2) Form predictions for the test data using xtest and the 

parameters estimated from the training data (i.e. β�
train

 from 

step [1]): π
β

β
�

�

�
test

test train

test train

x

x
=

( )
+ ( )
exp

exp1
.

3) Form a calibration plot using one of three options. 
Option 1: bin the ytest data (e.g. based on quantiles of π� test ). 
Plot the proportion of values where ytest  1 in each bin versus 
mean π� test  in each bin. Option 2: fit a new logistic regres-
sion model to the test data, considering a single predic-
tor, xtest train

β�  (i.e. the logit of the predicted values): logit 

E Y X b b xtest test test train
| ( ) = + ( )0 1 β� . Plot the fitted line with 

confidence intervals. Option 3: fit a more flexible, non-linear 
model (e.g., using regression or smoothing splines): logit 

E Y X f xtest test test train
| ( ) = ( )β� , and plot the fit of the model 

with confidence intervals.
If the model is well-calibrated, we should see the binned 

values (option 1) or the fitted curves (options 2 and 3) line 
up well with the 1:1 line. Further, estimates of (b0,b1) should 
be close to (0, 1) (option 2) if the model is well-calibrated. If 
estimates of (b0,b1) are far from (0, 1), then one may choose 
to use (b0,b1) to re-calibrate the model (Giudice et al. 2012, 
Harrell 2013).

Calibration plots for presence-background data

Presence-background data differ from presence–absence data 
in that the zeros (the background data) may be utilized by 
the species (i.e. they are not ‘true absences’). Boyce et  al. 
(2002) and Johnson et al. (2006) developed a calibration plot 
for presence-background data that has been widely used to 
validate habitat selection models fit to telemetry data using 
logistic regression. Rather than use predicted probabilities 
from the fitted logistic regression model in step [2], Boyce 
et  al. (2002) suggested using w x xtest train test train

β β� �( ) = ( )exp  
for model calibration. Although this approach might at 

Table 2. Estimated regression parameters ( β� ) and their standard 
errors (SE) for logistic regression models fit to training data in the 
second cross-sectional data simulation. The marginal distribution of 
x3 on the landscape, f a(x3), was Normal: f a(x3)  N(0,4). The relative 
probability of use (or presence) was proportional to exp 2 3 3

2x x−( ).
Model β� x3

SE β� x3
2 SE

y x∼ 3 0.24 0.05

y x x∼ 3 3
2+ 2.21 0.35 –1.05 0.17
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first appear to be ad hoc, it can be justified by recognizing 
that most methods for analyzing presence-background data, 
including logistic regression, can be shown to be equivalent 
to fitting an inhomogeneous Poisson process (IPP) model 
(Warton and Shepherd 2010, Aarts et al. 2012, Fithian and 
Hastie 2013, Hooten et al. 2013, Renner and Warton 2013). 
The likelihood for an IPP model, conditional on nu total used 
(i.e. presence) locations from area A, is given by:

L y x
x

x s ds
i i

i

n
i

A

u

| ,
exp

β
β

β
( ) =

( )
( )( )=

∏
∫1

exp
	 (1)

The na randomly (or systematically) sampled available (i.e. 
background) points serve to approximate the integral in the 
denominator:

L y x
x

w x
i

i

n
i

n n
j j

u

a u
( | )

( )

( )
i

j

,
exp

exp1

β
β

β
≈

=
=

+∏ ∑ 1

	 (2)

where the wj are quadrature weights used to approximate the 
integral in Eq. (1) using numerical integration techniques 
(ideally, the number of background points should be large 
enough that regression parameter estimators do not change 
with the addition of more points; Warton and Shepherd 
2010). Thus, conditional on the set of used and available 
points (nu, na), the probability of selecting each point is pro-
portional to exp(xb).

Boyce et al. (2002) and Johnson et al. (2006) suggested 
using k-fold cross-validation to form a binned calibration 
plot. After forming predictions via cross-validation, the plot 
is constructed via the following steps.

1) Bin the ytest data using quantiles of w xtest train
β�( )  and cal-

culate the mean value of w xtest train
β�( )  in each bin, wi  (i  1, 

2 …, nbins).
2) Determine the number of used locations in each  

bin, nu
i .

3) Determine the expected number of used locations in 

each bin, E n n
w

w
u
i

u
test i

ik

nbins
[ ] =

=∑ 1

, where nu
test  is the total num-

ber of used (i.e. presence) locations in the test data set. (Note: 
this equation can be modified slightly if the number of loca-
tions in each bin is not constant, see Johnson et al. 2006.)

4) Plot nu
i  versus E nu

i[ ]  along with a 1:1 line. As with 
presence–absence calibration plots, models with adequate fit 
should result in points that largely follow the 1:1 line.

Boyce et  al. (2002) also advocated for calculating the 
Spearman correlation between nu

i  and E nu
i[ ] . As noted by 

Phillips and Elith (2010), the Spearman correlation provides 
an alternative, non-parametric method for assessing calibra-
tion. Johnson et  al. (2006) also suggested fitting a linear 
regression model relating nu

i  to E nu
i[ ] , which should result 

in intercept and slope estimates close to 0 and 1, respectively, 
if the model is well-calibrated. Lastly, we note that Phillips 
and Elith (2010) proposed a similar presence-background 
calibration plot using statistical smoothers to evaluate fit, 
thus avoiding the need to bin the data.

Application of presence-background calibration plots to 
pooled-survey data examples

Following Johnson et  al. (2006), we constructed presence-
background calibration plots for the models fit to each of 
the simulated pooled-survey data sets (Fig. 1, 2). In the 
first example, both models resulted in calibration plots that 
roughly followed the 1:1 line as long as ρx x1 2,  was the same in 
the test and training data (Fig. 1A–D). When ρx x1 2,  differed 
between the test and training data, the calibration plot for the 
elevation-only model differed significantly from the 1:1 line 
(Fig. 1E), whereas the correct model remained well-calibrated 
(Fig. 1F). Another noteworthy feature of the calibration 
plots, particularly those for the correct model (Fig. 1B, D, F) 
or the elevation-only model in the case where ρx x1 2,   –0.3 
for training and test data (Fig. 1C), is a clustering of observed 
and expected counts near 0, except for the largest bin. This 
tight clustering reflects the high discriminatory ability of the 
models (i.e. they are able to clearly identify those points that 
have the highest relative probability of use).

In the second example, the model containing only a linear 
effect of temperature resulted in a calibration plot with points 
that were widely scattered, and although the regression line 
was close to the 1:1 line, the R2 is 0.04, suggesting the model 
did a poor job of predicting presence points in the test data 
(Fig. 2A). By contrast, the points in the calibration plot for 
the correct model, containing both temperature and tem-
perature2, closely followed the 1:1 line (R2  0.99; Fig. 2B) 
suggesting this model was well-calibrated.

In summary, using presence-background calibration plots, 
we were able to correctly identify poorly calibrated models 
when we were missing an important predictor (but only when 
the correlation among predictor variables changed between 
training and test data sets; Fig. 1E) or when we needed to 
include a non-linear term (Fig. 2A). By themselves, however, 
these plots provide little additional insight into what might 
be causing the lack-of-fit or ways that the model might be 
improved.

Used-habitat calibration (UHC) plot

A variety of residual plots (e.g. partial residual plots, added 
variable plots) have been developed to evaluate the poten-
tial for missing predictors or the need for non-linear terms 
in linear and generalized linear models (Kutner et al. 2005, 
Moya-Laraño and Corcobado 2008). Here, we develop a sim-
ple method for producing calibration plots that accomplish 
these same goals, but we use out-of-sample predictions. Spe-
cifically, we develop calibration plots that evaluate how well 
a model predicts the characteristics associated with the used 
(presence) locations. We call this type of plot a used-habitat 
calibration plot (or UHC plot) and describe the steps for pro-
ducing such plots below (see Fig. 3 for an illustration of the 
steps in the context of the first simulation example using the 
model with elevation but without precipitation).
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(A) (B)

(C) (D)

(E) (F)

Figure 1. Presence-background binned calibration plots using the method outlined in Johnson et al. (2006) applied to simulated data for a 
species whose distribution was driven by elevation (x1) and precipitation (x2). The marginal distribution of x1 and x2 on the landscape, 
fa(x1,x2), was Normal: fa(x1,x2)  N(0,Σ). We considered three different data-generating scenarios in which we set var(x1)  var(x2)  4, but 
varied cor(x1,x2)  ρx x1 2,  (represented by separate rows of panels). The relative probability of use (or presence) was proportional to exp 
(0.5x1–x2). Panels depict observed versus expected numbers of presence locations within 10 bins formed using estimated relative probabili-
ties of selection, w x xtest train test train

( ) exp( ),β β� �=  where xtest is a matrix of covariates in the test data set and β�
train  is a vector of regression parameter 

estimates obtained by fitting one of two logistic regression models to the training data (the two models are represented by the different 
columns). Overlaid is a regression line (black line with shaded 95% confidence intervals) relating observed and expected numbers of pres-
ence locations in each bin. A well-calibrated model should closely follow the 1:1 line (dashed line).



743

Let x represent the full suite of explanatory variables 
included in the fitted model, nu

test  the total number of used 
(i.e. presence) locations in the test data set, and z the covari-
ates of interest (these may be covariates already included in 
the model or additional covariates that may be under consid-
eration for inclusion in the model). The dimension of z may 
be greater than that of x, for example, if one chooses to begin 
with a simple model before progressively considering more 
complex models with additional covariates. Further, z may 
contain covariates that are available in the test data but are 
absent from the training data (e.g. if the model is applied to a 
new site where additional covariate data have been collected). 
In the example illustrated in Fig. 3, x includes only elevation, 
but z includes both elevation and precipitation.

1) Summarize the distribution of z at the used (i.e. pres-
ence) points in the test data set, f  u(z). In our examples, we 
use a kernel density estimator to represent f  u(z) (solid black 
lines/density plots in Fig. 3; Wand and Jones 1994). Simi-
larly, summarize the distribution of z at the available (i.e. 
background) points in the test data set, f  a(z) (dashed red 
lines/density plots in Fig. 3). Differences between these two 
densities signal that the covariate will be an important predic-
tor of the species distribution.

2) Fit a model to the training data set. Store β�  and côv (β� ) 
to characterize the uncertainty in the parameters (ignoring 
the intercept if using logistic regression). Assuming we have 
a large enough sample for β�  to be approximately normally 
distributed, we can draw samples from a multivariate nor-
mal distribution, N ( , )β β� � �cov ( ) , to account for uncertainty in 
the estimated parameters. This uncertainty may alternatively 
be captured using a non-parametric bootstrap or via samples 
from a posterior distribution (if implementing the model in 
a Bayesian framework); bootstrapping could also be used to 

account for parameter uncertainty in machine learning appli-
cations (e.g. models fit using random forests, artificial neural 
networks, etc.). We will refer to the distribution capturing 
uncertainty in β�  as the joint parameter distribution to recog-
nize that this will be a multivariate distribution if more than 
one covariate is included in the model.

3) Do the following M times (with loop index i): a) to 
account for parameter uncertainty, select new vector of 
parameter values randomly from their joint parameter dis-
tribution, bi. b) Estimate the relative probability of selection 
for the test data (given by Eq. (2)): w x xtest i test i( ) exp( ).β β=  
c) Select a simple random sample of nu

test  observations from 
the combined (presence and background) test data, with 
probabilities of selection proportional to w xtest i( )β  from step 
[3b]. d) Summarize the distribution of z associated with the 
points chosen in step [3c], f z

u

i
� ( )  (gray lines/density curves 

in Fig. 3).
4) Compare the observed distribution of covariate values 

at the presence points, f  u(z) (black solid lines) from step 
[1], to the predicted distribution of these characteristics, 
f z

u

i
� ( )  (gray bands) from step [3], across the M simulations. 
One option is to overlay f  u(z) (from step [1]) on a 95% 
simulation envelope constructed using the f z

u

i
� ( )  (Fig. 3). 

Alternatively, one might choose to plot the 2.5th and 97.5th 
quantiles of  f z f zu u

i( ) ( )− � . We include functions in the 
‘uhcplots’ package for constructing these plots and illustrate 
the latter type of plot in supplementary files archived with 
the Data Repository for the Univ. of Minnesota (Fieberg and 
ArchMiller 2016, Fieberg et al. 2016).

Application of UHC plots to pooled-survey data examples
To create UHC plots for the pooled-survey data examples, we 
constructed 1000 predicted distributions of habitat covariates 

(A) (B)

Figure 2. Presence-background binned calibration plots using the method outlined in Johnson et al. (2006) applied to simulated data for a 
species whose distribution was driven by temperature (x3) and temperature2. The marginal distribution of x3 on the landscape, f a(x3), was 
Normal: f a(x3)  N(0,4). The relative probability of use (or presence) was proportional to exp( )2 3 3

2x x−  Panels depict observed versus 
expected numbers of presence locations within 10 bins formed using estimated relative probabilities of selection, w x xtest train test train

( ) exp( ),β β� �=  
where xtest is a matrix of covariates in the test data set and β�

train  is a vector of regression parameter estimates obtained by fitting one of two 
logistic regression models to the training data (the two models are represented by the different columns). Overlaid is a regression line (black 
line with shaded 95% confidence intervals) relating observed and expected numbers of presence locations. A well-calibrated model should 
closely follow the 1:1 line (dashed line).
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at the presence points in the test data set (i.e. M  1000 in 
step [3]) using the models fit to the training data, accounting 
for uncertainty in β�  by drawing new values in each simula-
tion from a multivariate normal distribution (the asymptotic 
distribution of β� ; step [3a]). We compared observed (black 
solid lines) and predicted distributions (gray bands represent-
ing 95% simulation envelopes) of elevation and precipitation 
(Fig. 4) and temperature (Fig. 5) at the presence locations. 
We also overlaid distributions of elevation, precipitation, 
and temperature at the background locations, f  a (red dashed 
lines; Fig. 4, Fig. 5). Note that the distributions of elevation 
and precipitation at the presence locations (solid black lines) 
were shifted to the right and left, respectively, relative to the 
background distributions of these covariates (red dashed 
lines) (Fig. 4). These results reaffirm that this species tends to 
be found at locations with higher elevations and lower levels 
of precipitation. In the second example, the distribution of 

temperature at the used locations was also shifted to the right 
relative to the background distribution (Fig. 5). In addition, 
the used distribution was much more peaked compared to 
the background distribution of temperature, which suggests 
that this species prefers a more narrow range of temperatures 
than represented by the background locations.

In the first example, the UHC plots provided evidence 
that the correct model with both elevation and precipitation 
was well-calibrated across all three data-generating scenarios 
(Fig. 4C–D, G–H, K–L) because the distributions of eleva-
tion and precipitation at the presence locations (solid black 
lines) fell mostly within the simulation envelopes generated 
by the fitted model (gray bands). By contrast, the elevation-
only model never accurately predicted the distribution of 
precipitation values at the presence locations (Fig. 4B, F, J). 
On the other hand, it predicted the distribution of elevation 
at the presence locations whenever ρx x1 2,  was the same for 
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Figure 4. Used-habitat calibration (UHC) plots for the first simulation example where the species distribution was driven by elevation (x1) 
and precipitation (x2). The marginal distribution of x1 and x2 on the landscape, f a(x1,x2) (red dashed lines), was Normal: f a(x1, x2)  N(0,Σ). 
We considered three different data-generating scenarios in which we set var(x1)  var(x2)  4, but varied cor(x1,x2)  ρx x1 2,  (represented by 
separate rows of panels). The relative probability of use (or presence) was proportional to exp(0.5x1–x2). The observed distribution of eleva-
tion and precipitation at the presence (i.e. used) points in the test data set is given by the solid black lines, with a 95% simulation envelope 
for these distributions given by the gray bands. Predictive distributions were formed using one of two models fit to training data, a model 
with elevation only (left two columns) or elevation and precipitation (the correct model; right two columns). A model is well-calibrated if 
the observed distributions (solid black lines) fall within the simulation envelopes.
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both training and test data sets (Fig. 4A, E). Lastly, the ele-
vation-only model failed to predict either the distribution 
of elevation or precipitation at the presence locations when 
the correlation between elevation and precipitation differed 
between the training and test data (Fig. 4I, J). It is worth 
noting that in the case where ρx x1 2

0 3, .= −  for both train-
ing and test data sets, the elevation-only model’s predictions 
were well-calibrated (Fig. 1C, Fig. 4E) even though the logis-
tic regression parameter estimate for elevation was too large 
(0.80, SE  0.06) relative to the data-generating value (0.5) 
(Table 1). These latter two results serve as a nice reminder 
that regression coefficients reflect partial correlations that are 
influenced by the suite of predictors included in the model, 
and are not causal effects (Fieberg and Johnson 2015). Fur-
thermore, models may predict well in the presence of col-
linearity only when the correlation among predictors remains 
the same in training and test data (Dormann et al. 2013).

In the second simulation example, we fit a model with only 
a linear effect of temperature on the logit scale and another 
that also included a quadratic term (the correct model). 
When the model included only temperature, the coefficient 
for temperature was too low, but the coefficients were close to 
the data-generating values of 2 and –1 when both tempera-
ture and temperature2 were included in the model (Table 2). 
The predicted distribution for temperature was rather broad 
and similar to the available distribution when only a linear 
effect of temperature was included in the logistic regression 
model (Fig. 5A). By contrast, the distribution of temperature 
values at presence points was rather peaked, with values of 
x1 –2 or  2 rarely used (Fig. 5A). The extreme avoidance of 
low and high values of temperatures suggests that a quadratic 
effect of temperature might be needed. When we included 
the quadratic term for temperature in the logistic regression 
model, the distribution of temperature values at the observed 
locations fell within the 95% simulation envelope (Fig. 5B), 
confirming that this model was well-calibrated.

In summary, UHC plots helped to identify a missing 
predictor (precipitation) and also the need for a non-linear 
term (for temperature). It is also noteworthy that the miss-
ing predictor was identified in two scenarios where the 
model appeared well-calibrated when using a traditional 
presence-background calibration plot (Fig. 1A, C and  
Fig. 4B, F) (both scenarios involved predictive distributions 
in cases where ρx x1 2,  remained the same in training and test 
data sets).

Evaluating spatial predictions and model transferability

An important goal of most SDM applications is to predict 
species distributions in novel landscapes, which requires that 
models are ‘transferable’ to other sites, environments, and 
time periods. If we have location data from multiple sites, 
then we can evaluate transferability by fitting a model to 
some sites and then predicting the distribution of locations at 
the others (Matthiopoulos et al. 2011). UHC plots can then 
be used to identify areas in space where the model does a poor 
job of predicting. To accomplish this goal, we can include x 
and y spatial coordinates in z, the matrix of habitat character-
istics we wish to predict at the out-of-sample used locations.

To illustrate this idea, we return to our simulation exam-
ple where the species distribution was driven by elevation 
(x1) and precipitation (x2), with the probability of selecting 
locations proportional to exp (0.5x1–x2). We simulated uni-
formly distributed x and y spatial coordinates for the presence 
and background locations associated with two landscapes 
(a test and a training landscape), allowing the correlation 
among (x,y) spatial coordinates and the habitat predictors 
(x1,x2) to differ between the two landscapes (Table 3, Fig. 6). 
We again fit two models to data collected from the training 
landscape: the first included only elevation and the second 
included elevation and precipitation (the correct model). We 
then evaluated how well these models predicted the spatial 
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Figure 5. Used-habitat calibration (UHC) plots for the second simulation example where the species distribution was driven by temperature 
(x3). The marginal distribution of x3 on the landscape, f a(x3) (red dashed lines), was Normal: f a(x3)  N(0,4). The relative probability of use 
(or presence) was proportional to exp( ).2 3 2

3x x−  The observed distribution of temperature at the presence points in the test data set is given 
by the solid black lines, with a 95% simulation envelope for these distributions given by the gray bands. Predictive distributions were 
formed using one of two models fit to training data, a model with temperature (linear term only; panel A) or temperature and temperature2 
(the correct model; panel B). A model is well-calibrated if the observed distributions (solid black lines) fall within the simulation envelopes.
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distribution of presence points in the test landscape by 
creating UHC plots for the (x, y) spatial coordinates.

The presence locations in the test landscape were largely 
concentrated in the southeast (large x and small y; Fig. 6). 
The correct model accurately predicted the distribution of 
(x,y) spatial coordinates (Fig. 6C, D). By contrast, the model 
containing only elevation resulted in a predicted distribution 
that was relatively uniform in space and for which the x- and 
y-coordinates were not well calibrated (Fig. 6A, B). This exam-
ple illustrates how spatial UHC plots could be used to iden-
tify missing predictors (e.g. the poor calibration in Fig. 6A, 
B might lead an analyst to consider adding precipitation to 
the model because it follows a SE-NW gradient in the test 
landscape). These results also have important implications for 
management. In particular, one should be wary of using the 
elevation-only model to determine areas to conserve given 

the model’s poor transferability. Lastly, we note that one can 
use functions in the ENMeval package (Muscarella et  al. 
2014) to construct UHC plots with spatially-stratified cross-
validation in cases where data are available from a single site. 
We illustrate this approach in a vignette associated with the 
‘uhcplots’ package (Fieberg and ArchMiller 2016).

Step-selection functions

An alternative way to motivate the IPP likelihood, Eq. 
(1), can help with conceptualizing generalizations of this 
approach to longitudinal data. With telemetry data, we 
may consider the distribution of resources or environ-
mental conditions at the used (i.e. presence) points, f  u(x), 
as being selected from a distribution of values at available 
(i.e. background) points, f  a(x), with the selection function 
w(xb)  exp(xb) taking us from the distribution of avail-
able locations to the distribution of used locations by way 
of spatial covariates, x, and a set of regression parameters,  
b (Lele and Keim 2006):

f x
x f x

x s f x s ds
u i

a
i

a
( )

( ) ( )
( ( ) ) ( ( ))

=
∫

exp
exp

β
β 	 (3)

If all areas are equally available, f  a(x(s)) is uniform in space 
(and thus, a constant), getting us back to Eq. (1) (Aarts et al. 
2012). Selection functions have similarly been used to correct 
for biased sampling procedures (Patil and Rao 1978), to study 
natural selection (Manly 1985), and were first introduced in 
the context of foraging and habitat selection by McDonald 

Figure 6. Used-habitat calibration (UHC) plots for spatial coordinates (x,y). The species distribution was driven by elevation (x1) and pre-
cipitation (x2). The marginal distribution of x1 and x2 on the landscape, f a(x1,x2) (red dashed lines), was Normal: f a(x1,x2)  N(0,Σ). The 
relative probability of use (or presence) was proportional to exp(0.5x1–x2). Top panels depict the background distribution of elevation and 
precipitation in the training and test data landscapes, with presence points overlaid in yellow and black triangles. In the bottom panels, the 
observed distribution of elevation and precipitation at the presence points in the test data set is given by the solid black lines, with a 95% 
simulation envelope for these distributions given by the gray bands. Predictive distributions were formed using one of two models fit to 
training data, a model with elevation only (panels A and B) or elevation and precipitation (the correct model; panels C and D). A model is 
well-calibrated if the observed distributions (solid black lines) fall within the simulation envelopes.

Table 3. Correlation among spatial coordinates (x,y) and habitat 
covariates in training and test data in the simulation to evaluate 
areas in space where the model predicts poorly. The marginal distri-
bution of elevation (x1) and precipitation (x2) on the landscape was 
given by a multivariate normal distribution with mean vector  (0,0), 
and var(x1)  var(x2)  4. The true species distribution was propor-
tional to exp(0.5x1–x2).

Correlation

Variables Training data Test data

x1,x2 0.33 0.29
x-coordinate, x1 0.68 0.57
x-coordinate, x2 0.33 –0.29
y-coordinate, x1 0.35 –0.30
y-coordinate, x2 0.67 0.57
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et al. (1990); the theory for estimating selection functions is 
well developed under the label ‘weighted distributions’ (Patil 
and Rao 1977).

Historically, radio-telemetry studies allowed animals to 
be located once to several times per day. Telemetry-based 
SDMs typically assumed these locations could be treated 
as independent, with parameters estimated by compar-
ing these locations to randomly sampled (‘available’) sites 
from within an animal’s estimated home range (Fieberg 
et  al. 2010). This approach was often justified by noting 
that animals had sufficient time to reach any area within 
their home ranges between successive locations. The advent 
of Global Positioning System (GPS) data and associated 
hardware and software now allows researchers to assess 
habitat use with much finer temporal resolution. As a con-
sequence, however, telemetry locations collected close in 
time also tend to be close in space, and the only sites avail-
able to an animal shortly after one observation are those 
accessible to the animal from the previous location, within 
the time step.

Step-selection functions were developed to address these 
concerns (Fortin et  al. 2005, Forester et  al. 2009, Avgar  
et  al. 2016). Rather than treat locations as independent 
and assume a uniform distribution for f  a(x), step-selection 
functions treat movements between locations as inde-
pendent. Background locations specific to each telemetry 
location are generated by considering the previous location, 
the time between successive locations, and the movement 
characteristics of the study species – in particular, step lengths 
(distances between consecutive points collected at fixed tem-
poral intervals) and turn angles (change in bearing between 
consecutive locations) (Thurfjell et  al. 2014, Avgar et  al. 
2016). Background locations are generated by sampling step 
lengths and turn angles from their empirical distributions 
(Fortin et al. 2005) or from appropriate statistical distribu-
tions (e.g. exponential or gamma for step length, von Mises 
for turn angles) (Forester et al. 2009, Avgar et al. 2016). Step 
lengths and turn angles are then combined with the location 
at the previous time point to generate possible movement 
paths, and as a result, distributions of available points that 
are location-specific. To guard against misspecification of the 
step length and turn angle distributions (or, alternatively, 
to estimate parameters in assumed statistical distributions 
describing these movement characteristics), one can include 
as covariates various functions of the distance between points 
and angular deviations from the previous step (Forester et al. 
2009, Avgar et al. 2016).

The likelihood for these data is similar to that for the 
inhomogeneous Poisson process model, except that we now 
have stratified data (one stratum for each observed location 
and its associated available locations generated by the random 
movement paths):
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j k
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	 (4)

where K is the number of strata, ni is the number of locations 
(used plus available) in stratum i, and xj(k) are the covariates 

associated with the jth point in the kth stratum (with xi(k) 
giving the covariates for the used location).

Calibration plots with step-selection functions

It is unclear how traditional presence-background calibration 
plots (Boyce et  al. 2002, Johnson et  al. 2006, Phillips and 
Elith 2010) might be adapted to step-selection functions. In 
particular, it is not clear how we should account for the strata, 
which contain a fixed number of used locations (usually one). 
By contrast, UHC plots can be adapted to step-selection 
functions with only two minor changes: 1) rather than fit a 
logistic regression model in step [2], we can fit a conditional 
logistic regression model; 2) rather than select a simple ran-
dom sample in step [3c], we can select a stratified random 
sample (i.e. selecting one point from within each stratum). 
No other modifications are necessary.

Here, we illustrate the application of UHC plots to step-
selection functions fit to moose Alces alces telemetry data. From 
2010–2015, technicians captured 170 adult female moose 
in northeastern Minnesota. Technicians fitted moose with 
Iridium GPS radiocollars (VECTRONIC Aerospace, Berlin, 
Germany) recording animal locations at 4.25, 2, and 1.065-h 
fix rates. For a full description of capturing and deployment 
protocols see Carstensen et al. (2014). We selected a single 
animal with data from summer 2013 and summer 2014 and 
subsampled data collected at higher fix rates to achieve a con-
sistent 4.25-h fix rate  0.25 h. We excluded fixes within 24 
h of deployment and those with horizontal dilution of preci-
sion  10 (Rempel and Rodgers 1997). This left a total of 
689 used locations in both 2013 and 2014.

We generated 10 available locations for each used loca-
tion by randomly selecting 10 step lengths and 10 turn angles 
to project the animal forward in time from the previous 
location (see Street et  al. 2016 for full description of data 
development). We defined resource availability at used and 
available locations as the proportional cover of four land cover 
types within a 50 m radius buffer (identified in the National 
Land Cover Database 2011; Jin et al. 2013): deciduous for-
est (decid50), mixedwood forest (mixed50), coniferous forest 
(conif50) and treed wetlands (treedwet50).

We fit three conditional logistic regression models to the 
moose data using the ‘clogit’ function in the survival package 
of Program R (R Core Team, Therneau 2015), treating loca-
tions from 2013 as training data and locations from 2014 as 
test data. In the first model, we included decid50, mixed50, 
conif50, and treedwet50 as explanatory variables. In the sec-
ond model, we included the same set of predictors, except 
we dropped mixed50. Lastly, we fit a model containing only 
mixed50. We also included step length (divided by 1000 to 
scale the magnitude of the regression coefficient to that of the 
land cover classes) in each of the models to accommodate bias 
introduced by using parametric distributions for generating 
step-lengths (Forester et al. 2009, Avgar et al. 2016).

In the original step-selection model, the coefficient for 
conif50 was negative, whereas the coefficients for decid50, 
mixed50, and treedwet50 were all positive; of these, only the 
coefficient for mixed50 was statistically significant (Table 4). 
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When we dropped mixed50 from the model, the coefficients 
in the step-selection function changed drastically; the coef-
ficients for decid50 and treedwet50 even changed sign (Table 
4). The coefficients for all of the compositional predictors 
left in the model were negative (and all statistically signifi-
cant), which likely reflects the fact that having more of any 
one of these habitat types within 50 m meant having less of 
mixed50. This series of models nicely illustrates some of the 
challenges involved with modeling compositional data due to 
multicollinearity among the predictors (Graham 2003, Cade 
2015).

To produce UHC plots for these models, we again sim-
ulated 1000 used test data sets, drawing new regression 
parameters each time from N ( , )β β� � �cov ( ) . The UHC plots 
were similar for all three models, with the distribution of the 
covariates at the used points in the test data set largely falling 
within the predicted distributions for each of the explanatory 
variables (Fig. 7). These plots suggest that the models are 
well-calibrated, but also that the information about selection 
can be captured by a single compositional predictor, mixed50 
(Fig. 7I–L).

Discussion

The combination and popularity of open source software 
(Ghisla et al. 2012, R Core Team), remote sensing technolo-
gies, and a plethora of modeling approaches has facilitated 
the application of models linking plant and animal locations 
to environmental variables. Further, geographic informa-
tion systems (GIS) make it easy to produce maps depict-
ing predicted distributions for sampled and unsampled 
areas. But, how good are these models and the maps they 
produce? Should we trust models to predict distributions in 
novel environments, particularly when they are constructed 
by considering a large suite of often multicollinear predic-
tors (Dormann et al. 2013)? These questions are of utmost 

importance to wildlife managers and conservation biologists, 
and thus it is not surprising that they have garnered signifi-
cant attention lately from ecologists working across a wide 
range of taxa (Vanreusel et  al. 2007, Moreno-Amat et  al. 
2015, Torres et  al. 2015, Duque-Lazo et  al. 2016, Huang 
and Frimpong 2016).

Most popular approaches to fitting species distribution or 
habitat selection models rely on comparing observed loca-
tions of individuals to randomly or systematically selected 
locations that describe the background distribution or avail-
ability of resources or environmental conditions. Frequently, 
the combined presence-background data are modeled using 
binary regression models, with Yi  1 for observed locations 
and 0 for background locations (Johnson et al. 2006, Fithian 
and Hastie 2013). This treatment of the data originally led to 
much concern and confusion among practitioners who rec-
ognized that background points (with Yi  0) might actually 
be used by the species (Keating and Cherry 2004). Recent 
connections between common modeling approaches (e.g. 
MaxEnt, spatial logistic regression) and inhomogeneous Pois-
son process models have clarified both the role of the back-
ground points (they serve as quadrature points in Eq. (1); 
Warton and Shepherd 2010) and also the interpretation of 
regression parameters (they describe systematic variation in 
the log intensity of the Poisson process model; Aarts et  al. 
2012, Fithian and Hastie 2013, Renner et al. 2015).

As more researchers become aware of these connections, 
we expect to see a similar paradigm shift in terms of the 
methods proposed for validating species distribution and 
habitat selection models. Traditionally, methods for validat-
ing species distribution models have mimicked or modi-
fied approaches developed for presence–absence data. They 
have treated the number of presence locations as random, 
and have focused on how well the models do at predict-
ing whether locations are ‘used’ or ‘available’. By contrast, 
UHC plots consider the number of presence locations as 
fixed, and instead focus on validating a model’s ability to 
predict the characteristics (i.e. the biotic and abiotic factors 
used to model distribution patterns) at these locations using 
out-of-sample data. Our simulation examples demonstrated 
the utility of UHC plots for identifying missing covariates 
and nonlinearities that should be included in the model as 
well as how these plots can be used to identify areas in space 
that are poorly predicted. Our empirical example, based on 
moose movement data, demonstrated how this approach can 
accommodate the stratified nature of step-selection func-
tions and, further, how UHC plots can be used to provide 
insights into the effect of multicollinearity, particularly when 
considering compositional data. Future work should focus 
on exploring the use of UHC plots to suggest possible trans-
formations (e.g. log, step functions) or to detect other forms 
of model misspecification (e.g. the need for interactions). 
Simulated data are critical to these efforts since they allow 
one to evaluate model performance in scenarios where the 
factors driving the underlying species distribution are known 
(Miller 2014, Leroy et al. 2016).

Table 4. Parameter estimates (SE) from step-selection functions fit to 
moose Alces alces data in Minnesota using conditional logistic 
regression. Covariates measured the proportional cover of 4 land 
cover types within a 50 m radius buffer: deciduous forest (decid50), 
mixedwood forest (mixed50), coniferous forest (conif50), and treed 
wetlands (treedwet50). We also included step length (divided by 
1000 to scale the magnitude of the regression coefficient to that of 
the land cover classes; step) to accommodate bias introduced by 
using parametric distributions for generating step-lengths.

Model

Variable (1) (2) (3)

decid50 0.49 –0.60
(0.33) (0.19)

mixed50 1.38 1.03
(0.24) (0.16)

conif50 –0.30 –1.37
(0.38) (0.27)

treedwet50 0.40 –0.70
(0.31) (0.16)

step –6.33 –6.44 –6.39
(0.25) (0.25) (0.25)
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Recently developed approaches for assessing fit of spa-
tial point process models offer another promising alterna-
tive to UHC plots considered here (Baddeley et  al. 2005, 
2013, Renner et al. 2015). Specifically, one can plot residuals 
against spatial covariates or smoothed residuals versus spa-
tial location (e.g. easting, northing). These types of plots are 
available in the ‘spatstat’ library of Program R and have a 
strong theoretical basis (Baddeley et  al. 2008). The advan-
tage of the approach we suggest is that it can be applied 
more generally, as we have demonstrated with fitted logistic 
regression models and step-selection functions. The ability 
to construct simulation envelopes for out-of-sample data is 

another advantage, especially since most applications of spe-
cies distribution models consider a large suite of explanatory 
variables and often allow for considerable model complexity, 
leading to data-driven models that may be overfit and per-
form poorly when applied to new data (Giudice et al. 2012, 
Harrell 2013).

Understanding what motivates animals to move from 
one location to another, and how the broad-scale patterns 
of resources and risk affect the distribution of a species in 
the landscape is of critical importance to the management 
and conservation of wildlife and plant species. For mod-
els of species distributions to be useful, they must be more 
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Figure 7. Used-habitat calibration plots for step-selection models fit to moose Alces alces data in Minnesota. We considered three different 
models (represented by the three rows of panels), each containing a different subset of covariates (as indicated above each row of panels). 
Covariates in the models measured proportional coverage of deciduous forest (decid50), mixedwood forest (mixed50), conifer forest 
(conif50), and treed wetland (treedwet50) within a 50 m buffer of each location. We also included step length (divided by 1000 to scale the 
magnitude of the regression coefficient to that of the land cover classes; step) to accommodate bias introduced by using parametric distribu-
tions for generating step-lengths. Panels depict the distribution of available and used locations in the test data set (red dashed and solid black 
lines, respectively), along with 95% simulation envelopes for the predicted distribution of these habitat covariates at the used locations from 
the fitted step-selection functions. A model is well-calibrated if the observed distributions (solid black lines) fall within the simulation 
envelopes.
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than shots in the dark. They must be able to make predic-
tions about how a species will respond to new environmental 
conditions presented at different locations in space and time 
in the face of anthropogenic landscape change. By compar-
ing model predictions to out-of-sample data, UHC plots can 
identify important features that are well-predicted and others 
where improvement is needed. This process can shed light 
on how best to modify models, provide important insights 
into factors driving the distribution of species, and ultimately 
enhance the reliability and generality of conservation and 
management recommendations.
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Plant secondary metabolites (PSMs) are a key mechanism by which plants defend
themselves against potential threats, and changes in the abiotic environment can alter
the diversity and abundance of PSMs. While the number of studies investigating the
effects of abiotic factors on PSM production is growing, we currently have a limited
understanding of how combinations of factors may influence PSM production. The
objective of this study was to determine how warming influences PSM production
and how the addition of other factors may modulate this effect. We used untargeted
metabolomics to evaluate how PSM production in five different woody plant species
in northern Minnesota, United States are influenced by varying combinations of
temperature, moisture, and light in both experimental and natural conditions. We
also analyzed changes to the abundances of two compounds from two different
species – two resin acids in Abies balsamea and catechin and a terpene acid in
Betula papyrifera. We used permutational MANOVA to compare PSM profiles and
phytochemical turnover across treatments and non-metric multidimensional scaling
to visualize treatment-specific changes in PSM profiles. We used linear mixed-effects
models to examine changes in phytochemical richness and changes in the abundances
of our example compounds. Under closed-canopy, experimental warming led to distinct
PSM profiles and induced phytochemical turnover in B. papyrifera. In open-canopy sites,
warming had no influence on PSM production. In samples collected across northeastern
Minnesota, regional temperature differences had no influence on PSM profiles or
phytochemical richness but did induce phytochemical turnover in B. papyrifera and
Populus tremuloides. However, warmer temperatures combined with open canopy
resulted in distinct PSM profiles for all species and induced phytochemical turnover
in all but Corylus cornuta. Although neither example compound in A. balsamea was
influenced by any of the abiotic conditions, both compounds in B. papyrifera exhibited
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significant changes in response to warming and canopy. Our results demonstrate
that the metabolic response of woody plants to combinations of abiotic factors
cannot be extrapolated from that of a single factor and will differ by species. This
heterogeneous phytochemical response directly affects interactions between plants and
other organisms and may yield unexpected results as plant communities adapt to novel
environmental conditions.

Keywords: phytochemical turnover, PSM diversity, untargeted metabolomics, balsam fir, beaked hazel, paper
birch, red maple, trembling aspen

INTRODUCTION

Plant secondary metabolites (PSMs) are one of the primary
ways in which plants respond to environmental variability, and
regulation of PSM production is strongly influenced by the local
environment (Wink, 1988; Bennett and Wallsgrove, 1994; Bray
et al., 2000; Hirt and Shinozaki, 2003). Many interactions between
plants and other organisms are mediated by PSMs (Farmer, 2001;
Karban et al., 2006; Karban, 2008), and thus, the biochemical
mechanisms that influence these interactions are modulated, at
least in part, by the presence, absence, or magnitude of various
environmental factors (DeLucia et al., 2012; Jamieson et al.,
2012). For instance, changes in the amount and seasonality of
precipitation have been shown to influence concentrations of
cyanogenic glycosides (Gleadow and Woodrow, 2002; Vandegeer
et al., 2013), and elevated concentrations of atmospheric CO2
often result in increased concentrations of condensed tannins
(Lindroth, 2012). Evidence is mounting that recent warming may
also influence the production of PSMs (Kuokkanen et al., 2001).

Studies investigating the influence of warming on PSM
production suggest that temperature-induced changes to PSMs
may be species, compound, or even context dependent. For
example, warming has been shown to have no effect on levels
of phenolics in red maple (Acer rubrum, Williams et al., 2003),
Norway spruce (Picea abies, Sallas et al., 2003), and Scots pine
(Pinus sylvestris, Sallas et al., 2003) but resulted in decreased levels
of phenolics in dark-leaved willow (Salix myrsinifolia, Veteli
et al., 2006) and silver birch (Betula pendula, Kuokkanen et al.,
2001). Additionally, warming has been shown to increase levels of
terpene-based compounds in Norway spruce (Sallas et al., 2003),
Ponderosa pine (Pinus ponderosa, Constable et al., 1999), and
Scots pine (Sallas et al., 2003) but has been shown to both increase
(Constable et al., 1999) and decrease (Snow et al., 2003) levels of
monoterpenes in Douglas fir (Pinus menziesii). While evidence of
warming-induced changes to phytochemistry is important to our
understanding of how plants will respond to future climates, in
natural settings, elevated temperature often combines with other
abiotic conditions to influence PSM production and potentially
modulate any changes to phytochemistry that might otherwise be
induced by warming alone.

As temperatures continue to rise, global precipitation patterns
are expected to shift (Hurrell, 1995; Alexander et al., 2006; IPCC,
2014) and light availability to understory plants will likely be
altered due to changes in the frequency and intensity of forest
disturbance patterns (Canham et al., 1990; Dale et al., 2001).
While variability in each of these environmental factors has

been shown to influence production of PSMs on their own
(Bryant et al., 1983; Dudt and Shure, 1994; Pavarini et al., 2012),
combinations of factors can have a distinct effect (Rizhsky et al.,
2002, 2004; Mittler, 2006; Zandalinas et al., 2018). Moreover,
plant responses to combinations of abiotic factors can be either
synergistic or antagonistic (Bonham-Smith et al., 1987; Mittler,
2006; Zandalinas et al., 2018). For example, drought has been
shown to enhance cold tolerance (Cloutier and Andrews, 1984),
but also exacerbate a plant’s intolerance of high temperatures
(Rizhsky et al., 2002). Further, different combinations of salinity
and high temperatures have been shown to have both positive and
negative influences on the metabolism of reactive oxygen species
and stomatal response (Zandalinas et al., 2018). Regardless,
the vast majority of current research remains focused on the
influences of individual conditions rather than considering
potential interactions among them.

Until recently, the majority of studies investigating the
potential influence of different abiotic factors largely considered
the effects of these factors on individual compounds or small
groups of compounds. However, individual metabolites rarely,
if ever, function in isolation (Gershenzon et al., 2012). Rather,
the influence of any one compound is dependent on conditions
within the local environment, as well as the relative abundance
of numerous other metabolites within a plant’s array of chemical
constituents (Dyer et al., 2003; Richards et al., 2010; Gershenzon
et al., 2012; Jamieson et al., 2015). Thus, understanding how
changes in the abiotic environment will influence a plant’s
metabolic profile is important for interpreting how these changes
will influence the abundance and biological role of individual
compounds as well.

Phytochemical diversity influences how effective plants are
when defending against a range of threats (Gershenzon et al.,
2012; Frye et al., 2013; Richards et al., 2015). Compounds may
act synergistically, thereby forming mixtures that can provide
enhanced protection against potential hazards (Gershenzon,
1984; Harborne, 1987; Gershenzon et al., 2012). Indeed, recent
evidence suggests that the number of individual compounds
comprising a plant’s phytochemical profile can even influence
local biological diversity via the influence of changes in toxicity
on rates of herbivory (Richards et al., 2015). Increased diversity
of secondary metabolites may also allow for more precise
communication between plants, thereby allowing for more robust
protection against a range of conditions (Iason et al., 2005;
Poelman et al., 2008; Gershenzon et al., 2012; Frye et al.,
2013). Two metrics that are useful for assessing changes in
phytochemical diversity are “phytochemical richness” (i.e., the
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absolute number of compounds produced) and “phytochemical
turnover” (i.e., the degree of overlap among the compounds
produced), as both measures provide different insights into the
metabolic response of plants to a range of abiotic conditions.

Variability in phytochemistry, even within the same species,
may influence ecosystem structure and function through an
array of chemically driven ecological effects (Bukovinszky et al.,
2008; Gillespie et al., 2012; Sedio et al., 2017). The growth-
differentiation balance hypothesis (GDBH) suggests that as
the local environment becomes increasingly stressful, growth
processes will become limited and the production of PSMs will
increase until the point that PSM production also becomes
limited by resource acquisition/availability (Lerdau et al., 1994).
While phytochemical diversity has not been explicitly tested in
light of the GDBH, studies have shown that herbivore-induced
secondary chemistry can be completely suppressed in some
woody species under a range of abiotic conditions (Lewinsohn
et al., 1993), rendering them vulnerable to further invasion by
pests and pathogens. While the number of studies investigating
the effects of warming and other abiotic conditions on PSM
production is rapidly growing, we currently have a limited
understanding of how different abiotic factors may interact
to influence phytochemical diversity (Bidart-Bouzat and Imeh-
Nathaniel, 2008; Jamieson et al., 2012, 2015). The objective of this
study was to determine how elevated temperatures may influence
the production of PSMs and to evaluate how the addition of other
abiotic factors may modulate this effect.

While a targeted approach uses standard model compounds
to identify and observe changes in specific compounds selected
a priori, an untargeted (i.e., global) approach makes no
assumptions regarding specific metabolites, and therefore, allows
one to observe global changes across the entire metabolic profile.
Thus, the strength of an untargeted approach lies in the potential
to discover unanticipated changes in metabolic profiles as a result
of environmental perturbations (Crews et al., 2009). Although
untargeted metabolomics have been used in medicine for clinical
diagnosis of various diseases, including numerous forms of
cancer (Sreekumar et al., 2009; Jain et al., 2015), this study is
among the first to apply this method to an ecological setting.

We used an untargeted metabolomics approach to evaluate
how the phytochemical profiles of five different woody plant
species are influenced by temperature, soil moisture, and light.
Specifically, we tested the hypothesis that elevated temperatures
alter the production of PSMs by leading to phytochemical profiles
that are distinct from those found at ambient temperature
(H1) and that warming will change phytochemical diversity
via reductions in phytochemical richness or a high degree
of turnover (H2). We also tested the hypothesis that the
addition of other abiotic factors, specifically high light and
drought, will either magnify or nullify temperature-induced
changes in phytochemical profiles and PSM diversity (H3).
Finally, because individual compounds may vary greatly in
response to heterogeneity in the abiotic environment, we
identified two ‘example compounds’ from balsam fir (Abies
balsamea – two unspecified di-terpene resin acids) and paper
birch (Betula papyrifera – catechin and another unspecified di-
terpene resin acid) and analyzed the effects of different sets of

abiotic factors (high-temperature, light, and drought) on their
relative abundance. Specifically, we tested the hypothesis that
individual compounds will respond to different conditions and
combinations of conditions by either increasing or decreasing
in relative abundance, potentially in a non-uniform and
unpredictable manner (H4).

MATERIALS AND METHODS

Experimental Design
The Boreal Forest Warming at an Ecotone in Danger
(B4WarmED) project is an ecosystem experiment that simulates
both above- and below-ground warming in a boreal forest
community. The experiment was conducted at Cloquet Forestry
Center (CFC; Cloquet, MN, United States) and was initiated
in 2008. The experimental design consists of a 2 (overstory –
open and closed) × 3 (warming – ambient, ambient +1.7◦C,
and ambient +3.4◦C) × 2 (precipitation – ambient and ambient
−40%) factorial design with six replicates (two per block) per
treatment combination, for a total of 72 – 7.1 m2 plots (Rich et al.,
2015). Within each plot, 121 seedlings of 11 tree species were
planted into the remaining herbaceous vegetation in a gridded
design (Rich et al., 2015). Above-ground biomass was warmed
using a Temperature Free-Air-Controlled Enhancement System
(T-FACE) and below-ground biomass was warmed via buried
resistance-type heating cables (Rich et al., 2015). Above- and
below-ground temperatures have been monitored and logged
at 15-min intervals since spring 2008. In 2012, event-based rain
exclosures were installed on nine plots in the open overstory
replicates of the warming experiment, which allowed for safe and
reliable removal of rainfall. Mean annual rainfall exclusion from
June to September ranges from 42 to 45%.

We collected plant samples from the B4WarmED project
during two different time periods. On July 14, 2013, we collected
samples of balsam fir and paper birch that were grown under
closed overstory and three warming treatments, and on July 15,
2014, we collected samples of balsam fir, paper birch, trembling
aspen (Populus tremuloides), and red maple (Acer rubrum) grown
under open overstory in the three warming treatments and two
precipitation treatments. Where possible, we collected recent-
growth foliar tissue from two plants per species within each
replicate plot. However, some replicates contained either one
or no plants with enough leaf tissue to sample. Samples sizes
were particularly small during 2014, so we were forced to group
individual warming treatments (ambient,+1.7◦C,+3.4◦C) into a
binary response (ambient temperature vs. elevated temperature).
All plant samples were collected within a 2-h time period.
Upon collection, samples were flash frozen with dry ice, and
subsequently stored in a −80◦C freezer to minimize chemical
degradation. We broadly refer to samples collected from the
B4WArmED project as our “experimental” samples.

To investigate how temperature and light conditions may
interact to influence phytochemical production in a natural
forest environment, we collected samples of balsam fir, paper
birch, trembling aspen, and beaked hazel (Corylus cornuta)
from open and closed canopy environments across two regions
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in northeastern Minnesota (Figure 1). These regions exhibit
differences in mean-maximum summer temperature (maximum
daily temperature averaged across June, July, and August) of
approximately 5.5◦C (Supplementary Table S1). On July 14,
2015, we collected a minimum of 3 biological replicates from each
species within each set of abiotic conditions. The sampling design
consists of a 2 (overstory – open and closed) × 2 (temperature –
warm and cool) design with three plot replicates per treatment
combination, for a total of 12 – 400 m2 plots. Open-canopy plots
allowed us to evaluate high-light conditions on production of
PSMs and were located in areas that were clear-cut in 2006 (i.e.,
open overstory), while closed-canopy plots were located in areas
that experienced no known overstory disturbance since at least
1985 (i.e., closed overstory). Thus, light conditions for all plots
were based on whether the overstory was open (i.e., high light)
or closed (i.e., low light). Temperature logger data collected for a
parallel study from similar plot types suggest that average high
temperatures from May 1, 2015 to July 14, 2015 ranged from
30.4◦C in low-light plots in the cool region to 36.6◦C in high-light
plots in the warm region. All field samples were collected on the
same day, within an 8-h period. Upon collection, samples were
flash frozen with dry ice, and subsequently stored in a −80◦C

freezer. For brevity, we occasionally refer to samples collected
throughout northeast Minnesota as “observational” samples.

Study organisms
Balsam fir is a mid- to large-sized species of conifer, growing
to 26 m in height, with shallow roots (Smith, 2008). It is highly
vulnerable to drought, fire, and spruce budworm (Choristoneuro
fumiferana) infestations (Engelmark, 1999), and modest climate
warming has been shown to decrease net photosynthesis and
growth by as much as 25% (Reich et al., 2015). Paper birch
can grow to 28 m in height (Smith, 2008) and is drought
and shade intolerant (Iverson and Prasad, 1998; Iverson et al.,
2008). While it can grow rapidly and live to be 250 years
of age, seedlings need significant light to prosper (Kneeshaw
et al., 2006). Elevated temperatures have been shown to influence
foliar nitrogen, lignin, and condensed tannins in both paper
birch and trembling aspen with the specific response varying
as a function of species and climate (Jamieson et al., 2015).
Trembling aspen is one of the most widespread tree species in
North America and occurs on a wide-range of soil types and
in various climatic conditions (Smith, 2008). It is sensitive to
both drought and shade (Iverson and Prasad, 1998; Iverson et al.,

FIGURE 1 | Location of observational sites and the B4WarmED Project at the University of Minnesota’s Cloquet Forestry Center. The number of replicate plots for
each set of abiotic conditions is n = 3, and where only two can be seen for a given combination of abiotic factors (i.e., temperature + light conditions), locations are
close enough in proximity that they appear to overlap when viewed at a broad scale. Inset map identifies the approximate location of the study area within the state
of Minnesota and the boreal-temperate transition zone (Brandt, 2009).
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2008) and may become increasingly vulnerable to other potential
stressors under conditions of drought and high temperatures
(Worrall et al., 2008). Red maple is a moderately large tree,
growing to 29 m in height and is known to be tolerant to a
wide-range of precipitation conditions, from drought to seasonal
flooding (Smith, 2008). While this species is expected to prosper
under future climate scenarios (Iverson and Prasad, 1998; Iverson
et al., 2008) and performed well under experimental warming
(Reich et al., 2015), both prolonged flooding and severe drought
have been shown to result in senescence and decreased growth,
respectively (Nash and Graves, 1993). Beaked hazel, a shade-
tolerant shrub that can grow to 4 m tall, is a common understory
species in both conifer and deciduous forests and occurs almost
exclusively in fire prone habitats (Smith, 2008). Beaked hazel
is highly sensitive to fire and previous work suggests that
growth may be limited by soil moisture (Johnston and Woodard,
1985).

Metabolite Analysis
Tissue samples were lyophilized for 72 h and then homogenized
and extracted using 25 mg (+/−2.5 mg) of each sample.
Homogenization and extraction were performed for 5 min at a
frequency of 1500 Hz with 1 ml of 70% isopropyl alcohol at –
20◦C using a bead mill and 2.8 mm tungsten carbide beads (Sped
Sample Prep GenoGrinder 2010, Metuchen, NJ, United States).
Samples were then subjected to centrifugation at 16,000 × g
for 5 min. The supernatant was then removed and subjected to
an additional centrifugation step, 16,000 × g for an additional
5 min, and the supernatant was collected for subsequent analysis.
Finally, 20 µL of each supernatant sample was removed and
pooled to use as a control. All samples were then stored at –
80◦C.

We analyzed samples with liquid chromatography mass
spectrometry (LC-MS) using an Ultimate 3000 UHPLC (ultra-
high-performance liquid chromatography) system coupled to a
Q Enactive hybrid quadrupole-Orbitrap mass spectrometer with
a heated electrospray ionization (HESI) source (Thermo Fisher
Scientific, Bremen, Germany). We injected 1 µL of each sample
per analysis onto an ACQUITY UPLC HSS T3 column, 100 Å,
1.8 µm, 2.1 mm× 100 mm (Waters, Milford, MA, United States)
using a gradient composed of solvents A: 0.1% formic acid
and B: acetonitrile. Specifically, 0–2 min, 2% B; 6 min, 24% B;
9 min, 33% B; 12 min, 65% B; 16 min, 80% B; 20 min 93% B;
21 min 98% B; 22 min 98% B; 23 min 2% B; 23–25 min 2%
B. Samples were analyzed in a randomized order to minimize
systematic bias from instrument variability and carryover. Full-
scan analysis was performed using positive/negative ion polarity
switching, a 115–1500 m/z scan range, a resolution of 70,000 (at
m/z 200), maximum fill times of 100 ms, and target automatic
gain control (AGC) of 1 × 106 charges. Ion fragmentation was
performed using a higher-energy collision dissociation (HCD)
cell and resulting MS/MS data were collected using a resolution
of 17,500, maximum fill times of 100 ms, and an AGC target of
2 × 105 charges. Normalized collision energies (NCE) ranged
from 10 to 45 in increments of 5. All data were collected
using Xcalibur version 2.2 (Thermo Fisher Scientific, Bremen,
Germany).

Example Compounds
To determine which chemical features varied consistently and
significantly among each treatment and species group, we
aligned, smoothed, background subtracted, and analyzed all
chromatographic data using analysis of variance (α = 0.001)
via Genedata 7.1 (Genedata, Basel, Switzerland). We assigned
putative metabolite identities only to the features found to
be significantly abundant (ANOVA, α = 0.001) with an exact
mass and higher-energy collisional dissociation (HCD) MS/MS
fragmentation spectra. We determined molecular formulae by
using exact mass to calculate the most probable elemental
composition for each feature (Supplementary Table S2).
We then manually interpreted HCD spectra collected at
numerous collision energies (Supplementary Figures S1–S3),
and compared these to the MassBank database using MetFusion
(Gerlich and Neumann, 2013). Where possible, we confirmed
the identity of individual compounds via comparison to an
authenticated standard (Sigma-Aldrich) and assigned other
putative identities by matching molecular formulae to those of
previously observed metabolites in Betula (Julkunen-Tiitto et al.,
1996) and Abies (Otto and Wilde, 2001). Specifically, we analyzed
changes in the relative abundance of catechin and an unspecified
terpene acid in paper birch and two unspecified diterpene resin
acids in balsam fir. The identification of catechin was confirmed
by comparison of accurate mass, LC-retention and MS/MS
fragmentation properties of commercially available standard
compounds for both catechin and its frequently associated isomer
epicatechin which were distinguishable by chromatographic
separation. There has been a great deal of work investigating the
biological and ecological activity of catechin and terpenoid-based
metabolites (Tahvanainen et al., 1985; Gershenzon and Croteau,
1992; Berg, 2003; Stolter et al., 2005); and as a result, we expect
our results regarding these compounds to be broadly relevant.

Data Processing and Statistical Analysis
Data processing and statistical analyses were conducted using
R 3.5.0 (R Core Team, 2017). To initiate data processing,
we used the xcmsRaw function in the xcms package (Smith
et al., 2006; Tautenhahn et al., 2008; Benton et al., 2010) to
read our raw mzML files into R. After separating our data
by polarity using the split function in the base package, we
used the findPeaks.centwave function for peak detection, which
we parameterized as follows: ppm = 2, peakwidth = c(5,20),
prefilter = c(1,15000000), mzCenterFun = “apex,” integrate = 1,
mzdiff = −0.001, fitgauss = F, snthresh = 10. Once peak detection
was complete, we trimmed the resulting polarity-specific data
frames based on retention time and retained only those peaks
detected between 1 and 21 min.

A major shortfall of employing LC-MS to perform “untargeted
profile analysis,” as we did here, is the production of two
independent but partially overlapping datasets resulting from
ion polarity switching. While polarity switching is useful for
detection of features that can only be detected via either positive
or negative ionization, some features are detectable under both
ionization modes, therefore resulting in two independent data
sets containing a small subset of common features. Moreover,
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interpretation of statistical results is challenging due to the
presence of parallel sets of analyses with common features
contributing to both. To alleviate these issues, we combined
positive and negative polarities using the find.matches function in
the Hmisc package (Harrell and Dupont, 2018). The find.matches
function allows one to identify which rows in a data matrix align
with those in a separate, identically formatted matrix by allowing
the user to define a tolerance level for the numerical columns
in each matrix. Thus, to determine our common features in the
positive and negative ionization datasets that result from LC-
MS, we created two matrices for positive and negative polarity,
containing three separate columns – the mass of each detected
peak, an assigned name for each peak, and retention time. To
ensure that corresponding features from each ionization mode
were capable of alignment, we subtracted 2.1046, roughly the
mass of two protons, from all masses in the positive polarity
dataset. For those features identified as common among both
ionization modes, we retained peak data from the polarity
exhibiting greatest mean intensity across all samples. We then
assigned new peak names to identify which peaks were present
in either positive or negative polarity vs. those that were found
in both. All output created using the find.matches function was
manually checked to ensure that all peaks identified as having a
match in one polarity, had their mate identified as a match in the
other.

We used permutational MANOVA (perMANOVA, Anderson,
2001) to compare PSM profiles between abiotic conditions.
When analyzing PSM profiles, differences were estimated using
Canberra dissimilarity matrices (Dixon et al., 2009). Analysis was
performed with the adonis function (from the vegan package,
Oksanen et al., 2015), which allowed us to account for our
blocked sampling design via the strata argument. Both differences
in the centroids among conditions or differences in multivariate
dispersion can lead to statistically significant results when
using perMANOVA. To determine whether differences among
centroids were contributing to perMANOVA results, we created
mean dissimilarity matrices using the meandist function and we
used the betadisper function to assess multivariate homogeneity
of variance (i.e., dispersion, Oksanen et al., 2015). We used
non-metric multidimensional scaling (NMDS, Kruskal, 1964) to
visualize differences in PSM profiles among conditions, which
we performed using the metaMDS function in the vegan package
(Oksanen et al., 2015). We set our dimensionality parameter (k)
to 2 and projected condition-specific effects onto NMDS plots
using the ordiellipse function to plot 95% confidence ellipses
based on standard error (Oksanen et al., 2015).

To evaluate treatment-induced changes to PSM diversity, we
calculated phytochemical richness based on the presence and
absence of individual compounds, then tested the main effect
of treatment on richness with block (experimental samples)
or site ID (observational samples) as our random effect using
linear mixed-effects models (lme function within the nlme
package, Pinheiro et al., 2015). To analyze phytochemical
turnover (i.e., the degree of overlap between the phytochemical
profiles of individual plants across and between conditions),
we created dissimilarity matrices based on binary datasets
representing the presence or absence of each feature using

Jaccard’s Index. We evaluated condition-specific differences in
phytochemical turnover using perMANOVA via the adonis
function, and evaluated the influence of multivariate centroids
and homogeneity of variance on perMANOVA results as detailed
above (Anderson, 2001; Oksanen et al., 2015).

Weather data from CFC shows that ambient air temperature,
cumulative precipitation from 1 January to collection date, and
leaf surface temperature were not statistically different between
2012 and 2013 or between specific sample sets (2013 – closed
overstory, 2014 – open overstory). However, soil moisture and
soil temperature vary strongly between years and sample sets, and
differences between experimental and observational samples are
likely to be even greater. Thus, samples collected during different
years were analyzed independently of one another as individual
data sets.

For analytical and visualization purposes, the condition or set
of conditions assumed to impart the least amount of metabolic
change during each year was labeled as our reference group, to
which all other conditions were compared for that sample year.
For Year 1 (2013), we designated “ambient” as our reference
category, while samples grown under ambient temperature and
ambient precipitation were designated as our reference category
for Year 2 (2014). We designated samples collected from cold
region, low-light conditions as our reference category for Year
3 (2015). To help visualize how different abiotic conditions may
influence PSM production in different species, we calculated
the number of chemical features that increased and decreased
by ≥ 75%, relative to our reference category and created scaled
Venn Diagrams representing these relationships.

Finally, we used linear mixed-effects models to test the main
effect of abiotic condition on the relative abundance of our
example compounds, with sample block as our random effect
for experimental samples and plot ID as our random effect for
observational samples (lme function within the nlme package,
Pinheiro et al., 2015). These models tested whether combinations
of abiotic factors influence the abundance of our known example
compounds.

RESULTS

Temperature
The influence of temperature was both species and context
dependent. In closed overstory (Year 1), when compared
to ambient, warming-induced changes to the phytochemical
profile of balsam fir were not statistically significant, whereas
paper birch exhibited warming-induced shifts to phytochemical
profiles, thereby leading to distinct PSM profiles for the
warming treatment. Analysis of multivariate dispersion and
mean-dissimilarity matrices both suggest that differences in
paper birch were due to temperature-induced changes in the
centroid rather than dispersion (Table 1). NMDS plots reveal
minor overlap between temperature conditions in paper birch,
and balsam fir grown under moderate and high-temperatures
show strong overlap with plants grown in ambient temperatures
but minor overlap with each other (Figure 2). Warming had
no effect on phytochemical richness in either species but did
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) plots detailing the influence of moderate and high-temperature on PSM profiles of (A) balsam fir and (B)
paper birch in closed overstory. Ellipses represent 95% confidence intervals, based on standard error. In balsam fir, both warming treatments exhibit less overlap with
each other than with ambient. In paper birch, different temperatures lead to distinct profiles when compared to each other and ambient.

influence phytochemical turnover in paper birch (Table 1). In
open overstory (Year 2), warming had no influence on PSM
profiles or PSM diversity (i.e., richness or turnover), regardless
of species (Table 1). NMDS plots support these findings in that
there is no discernible relationship between temperature and
PSM profiles, regardless of species (Figure 3). In observational
samples collected throughout northeast Minnesota (Year 3),
temperature on its own had no influence on plant PSM profiles
or phytochemical richness values. However, phytochemical
turnover was significantly different in plants from different
temperature regions in paper birch (perMANOVA, F = 5.912,
r2 = 0.179, P = 0.0003) and trembling aspen (perMANOVA,
F = 3.322, r2 = 0.156, P = 0.0012). NMDS plots suggest that each
species responds differently to combinations of temperature and
light (i.e., canopy; Figure 4). Balsam fir produces distinct PSM
profiles as a function of ambient light conditions (i.e., open vs.
closed canopy), but only within the cool region, while paper birch
and trembling aspen appear to have distinct PSM profiles for each
combination of conditions. Conversely, beaked hazel exhibits no
discernible pattern across different conditions.

Venn diagrams created to help visualize the influence of
different abiotic conditions for Year 1 samples suggest that
the high-temperature (+3.4◦C) treatment induced a greater
response from both balsam fir and paper birch than the
moderate-temperature (+1.7◦C) treatment. Specifically, the
high-temperature treatment led to more features that either
increased or decreased in relative abundance by 75% or more
when compared to ambient or moderate-temperature treatments
(Table 2 and Supplementary Figures S4–S6).

Interactive Effects of Different Abiotic
Conditions
In our Year 2 samples, the combination of drought and elevated
temperature had no influence on PSM profiles or any aspect of
phytochemical diversity, regardless of species (Table 1). These
results were supported by NMDS plots (Figure 3). Additionally,
Venn diagrams suggest large-magnitude increases or decreases in

relative abundance of PSMs did not follow an obvious pattern that
could be attributed to different conditions. There appears to be
a high degree of overlap across conditions in those compounds
that exhibit increases in relative abundance of ≥ 75%, while less
overlap occurs among compounds exhibiting large declines in
relative abundance. Furthermore, the influence of drought on
the decline of relative abundance by ≥ 75% appears to be more
distinct than that of either warming or warming and drought
together (Table 2 and Supplementary Figures S4–S6).

In observational samples from throughout northeast
Minnesota (Year 3), when evaluating the effects of high
temperature and light combined, balsam fir appears to create
unique PSM profiles in response to different light conditions
(i.e., open vs. closed canopy), but only within the cool region,
while paper birch and trembling aspen appear to have distinct
PSM profiles for each condition. Beaked hazel exhibits no
discernible pattern (Figure 4). Phytochemical richness did not
vary as a function of light conditions or temperature region.
However, phytochemical turnover in balsam fir was significantly
influenced by conditions of high light (i.e., open canopy; Table 3).
When analyzing the interactive effects of light conditions and
temperature region, all species exhibited significant differences
in their PSM profile (Table 3), with only trembling aspen
exhibiting significant differences in multivariate dispersion as a
function of the combination of light condition and temperature
region (Table 3). Although phytochemical richness was not
influenced by the combined effects of temperature region and
light conditions, phytochemical turnover was influenced in paper
birch and trembling aspen and a marginal, non-significant trend
was present in beaked hazel (Table 3).

Patterns in Venn diagrams detailing the influences of different
conditions during Year 2 are difficult to discern, as different plant
species appeared to respond to varying conditions in different
ways (Table 2 and Supplementary Figure S5). Drought led to
more features increasing by ≥ 75% in balsam fir and paper
birch, while elevated temperature led to the large-magnitude
increase of more features in trembling aspen (Table 2 and
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) plots detailing the influence of elevated temperature and drought on PSM profiles of (A) balsam fir, (B) red
maple, (C) paper birch, and (D) trembling aspen in open overstory. Ellipses represent 95% confidence intervals, based on standard error. There appears to be no
discernible pattern between sets of abiotic factors and PSM profiles, regardless of species.

Supplementary Figure S5). In red maple, the combination of
drought and elevated temperature had the greatest influence
on large-magnitude increases in relative abundance (Table 2
and Supplementary Figure S5). The combination of drought
and warming led to more large-magnitude declines in relative
abundance in balsam fir and paper birch, while drought had
a greater impact on red maple and trembling aspen (Table 2
and Supplementary Figure S5). In observational samples (Year
3), the combination of high-light conditions and warmer
temperatures led to more large-magnitude shifts in relative
abundance (i.e., increasing and decreasing by 75% or more),
regardless of species (Table 2 and Supplementary Figure S6).

Example Compounds
In closed-overstory conditions (Year 1), warming resulted
in significant declines in both catechin and terpene acid in

paper birch but had no influence on either compound in
balsam fir (Figure 5 and Supplementary Table S3). In high-
light conditions (Year 2), neither of the compounds in either
species exhibited a significant, condition-specific change in
relative abundance. However, terpene acid in paper birch was
completely absent from all samples collected from high-light
plots (Figure 6 and Supplementary Table S3). In observational
samples from throughout northeast Minnesota (Year 3),
neither compound in balsam fir exhibited significant changes
in relative abundance due to light conditions, temperature
region, or their interaction. In paper birch, however, the
interactive effects of high-light conditions and warmer-
temperatures resulted in a more than 250% increase in the
relative abundance of catechin, while terpene acid exhibited no
response, regardless of treatment (Figure 7 and Supplementary
Table S3).
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FIGURE 4 | Non-metric multidimensional scaling (NMDS) plots detailing the influence of varying light and temperature conditions on PSM profiles of (A) balsam fir,
(B) paper birch, (C) beaked hazel, and (D) trembling aspen. Ellipses represent 95% confidence intervals, based on standard error. Each species appears to respond
to different abiotic conditions in a unique manner. Balsam fir appears to create unique PSM profiles in high-light conditions when compared to our reference group
(closed canopy, low temperature), while paper birch and trembling aspen appear to have distinct PSM profiles for each set of conditions. Beaked hazel exhibits no
discernible pattern.

DISCUSSION

Our study is among the first to explicitly show that combinations
of abiotic drivers (often potential stressors) in forest plants can
lead to broad phytochemical responses that are distinct from
those that result from single abiotic factors and that different
species of woody plants respond to complex sets of conditions
in variable ways. In our experimental samples, warming under
closed canopy led to distinct PSM profiles in paper birch but not
balsam fir, with paper birch exhibiting increased phytochemical
turnover. Warming under open canopy had no influence on
PSM profiles or any aspect of phytochemical diversity. In our
observational samples collected across northeast Minnesota,
warmer temperatures had no influence on PSM profiles but did
lead to significant phytochemical turnover in paper birch and
trembling aspen. When elevated temperature was combined with

drought in Year 2 of our experimental samples, we found no
influence on PSM profiles or phytochemical diversity. However,
temperature variation combined with high-light conditions in
our observational samples resulted in condition-specific profiles
for all species and led to significant phytochemical turnover in
all but beaked hazel. In general, our results indicate that the
phytochemical response of plants to varying combinations of
abiotic factors cannot be directly extrapolated from the response
of plants to individual factors. Perhaps more importantly,
our results provide evidence that heterogeneity in the abiotic
environment influences secondary metabolism in woody plants
via a range of complex and highly variable responses.

Few studies to date have explicitly studied the influences
of heterogeneity in the abiotic environment on phytochemical
diversity, and specifically, phytochemical turnover. However,
it has been hypothesized that variability in which compounds
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TABLE 2 | Number of chemical features that increase and decrease in relative abundance by ≥ 75% as a function the dominant stress condition.

Year Species Increase by ≥ 75% Decrease by ≥ 75%

Stress condition Number affected Stress condition Number affected

2013 Balsam fir High Temperature 6 High Temperature 21

Paper birch High Temperature 28 High Temperature 38

2014 Balsam fir Drought 43 Temperature + Drought 35

Paper birch Drought 98 Temperature + Drought 31

Red maple Temperature + Drought 36 Drought 66

Trembling aspen Temperature 79 Drought 37

2015 Balsam fir Temperature + Light 26 Light 111

Beaked hazel Temperature + Light 155 Temperature + Light 56

Paper birch Temperature + Light 126 Light 278

Trembling aspen Temperature + Light 280 Light 162

In most scenarios, the stress condition that led to large-scale increases in relative abundance was different than that which led to large-scale decreases. “Number
affected” displays the number of chemical features that either increased or decreased by ≥ 75% for the given species and stress condition.

are either present or absent may be an adaptation for variable
environments, thereby decreasing vulnerability of plants to
a range of potential stress conditions, including herbivory
(Laitinen et al., 2000; Cheng et al., 2011). Here, we found that
in some plants species, different combinations of abiotic factors
can affect which compounds are either present or absent, thus
leading to phytochemical turnover. For example, compounds that
are absent in one set of conditions may become present within
a slightly different set of conditions, or vice versa. The potential
for this to occur was apparent when our example terpene acid
decreased in paper birch plants subjected to experimentally
elevated temperature in closed canopy but went completely
undetected in plants subjected to experimental warming and
drought in open canopy and exhibited no change at all in our
observational samples from throughout northeast Minnesota.
Suppression of individual compounds due to varying stress
conditions has been observed in other studies as well. For
instance, proline, which is thought to play an important role
in protection from drought, is severely suppressed when plants
are simultaneously subjected to drought and high temperatures
(Rizhsky et al., 2004). While individual compounds can play an
important role in the survival of plants subjected to a range
of biotic and abiotic conditions, a plant’s phytochemical profile
imparts a metabolic framework that can determine the biological
role and strength of individual compounds (Dyer et al., 2003;
Richards et al., 2010; Gershenzon et al., 2012; Jamieson et al.,
2015). Here, we show that individual compounds as well as the
phytochemical context within which they operate can both be
altered by variations in the abiotic environment.

Plants produce thousands of individual compounds, and
variations in the relative abundance of many of these compounds
can have a wide-range of effects on the biotic interactions
plants have with other organisms. Catechin, which is a phenol-
based precursor to proanthocyanidins (i.e., condensed tannins),
is widely considered an antiherbivore defensive compound
(Tahvanainen et al., 1985; Berg, 2003; Stolter et al., 2005) and
can have a significant, negative impact on the development of
forest pests (Roitto et al., 2009). Catechin also has antimicrobial

and allelopathic effects, and plants with decreased catechin
production may be at a competitive disadvantage for nutrients
within the soil as it can inhibit the growth and germination
of neighboring plants (Veluri et al., 2004; Inderjit et al., 2008).
Terpene acids, including diterpene resin acids, are considered
strong antifeedants (Ikeda et al., 1977), and the ingestion of
forage with elevated concentrations of diterpenoids can result
in slower development times and significantly higher mortality
in herbivorous larvae (Larsson et al., 1986). Here, we show that
different compounds have individualized responses based on the
micro-environmental conditions that are present.

In balsam fir, warming alone led to consistent, albeit non-
significant declines in the mean relative abundances of both resin
acids. When high temperatures were combined with other abiotic
factors (i.e., drought and light), resin acid 1 exhibited consistent
but non-significant increases, while resin acid 2 was more
variable, exhibiting no consistent trend. In paper birch, both
example compounds exhibited significant changes in relative
abundance as a function of different factors. While elevated
temperature alone led to significant declines in catechin, the
combination of elevated temperature and high light led to a more
than 250% increase in relative abundance. Our example terpene
acid declined with warming and was undetectable when we tried
to assess the effects of drought. This particular scenario provides
an example of how individual compounds may “wink in or out”
due to variation in the abiotic environment.

Numerous studies have reported that high-temperature and
drought interact to alter PSM production in plants (Craufurd
and Peacock, 1993; Savin and Nicolas, 1996; Jiang and Huang,
2001; Rizhsky et al., 2002, 2004). Thus, we were surprised
to find no interaction between drought and warming in our
study. It is important to note, however, that the extremes of
those treatments employed by other studies are typically greater
than what we test here, sometimes increasing temperature to
more than 40◦C (Rizhsky et al., 2002) and withholding water
altogether for extended periods (Jiang and Huang, 2001). In
our study, mean soil moisture was lower during 2014 than
2013, with mean soil temperatures being higher (unpublished
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FIGURE 5 | Relative change in abundance (%) for specific PSM compounds when compared to our reference treatment for Year 1 (ambient temperature) for (A)
balsam fir and (B) paper birch in closed overstory. Neither resin acid in balsam fir was influenced by warming. In paper birch, both catechin and terpene acid
declined with warming relative to ambient. Error bars represent the 95% boot-strapped confidence intervals and relative abundances significantly different than those
found in the baseline treatment are identified by an asterisk (∗).

FIGURE 6 | Relative change in abundance (%) for specific PSM compounds when compared to our baseline treatment for Year 2 (ambient temperature, ambient
precipitation) for (A) balsam fir and (B) paper birch in open overstory. Neither resin acid in balsam fir was influenced by warming. In paper birch, relative abundance
of catechin was not influenced by temperature; however, terpene acid was undetected. Error bars represent the 95% boot-strapped confidence intervals.

data). Surprisingly, air temperature and leaf-tissue surface
temperature during late spring/early summer (May 1 to July
15) were indistinguishable between samples years and plot types
(2013 closed canopy vs. 2014 open canopy), and cumulative
precipitation during the first half of each year (January 1
to July 15) was also indistinguishable (unpublished results).
Combinations of abiotic factors can have one dominant factor
that defines the phytochemical response of affected plants,
and drought, when present, may dominate the influence of
combinations of abiotic factors. Considering this, our inability
to identify any treatment-specific influence on PSM profiles
or phytochemical diversity may be due to low soil moisture
during 2014. If plants from which samples were collected from

in 2014 were experiencing some level of drought stress due
to low soil moisture, this signal may have preempted any
potential phytochemical response that might have occurred due
to treatment.

When considering the influence of abiotic conditions on large-
scale shifts in relative abundance (increases or decreases ≥ 75%
relative to our reference group), greater increases in temperature
(+3.4◦C) appeared to have a greater influence than moderate
increases (+1.7◦C). When present, drought, either alone or
in combination with elevated temperature, dominated all but
one of the large-scale shifts we assessed (Year 2), and in
our observational samples, high-light conditions, either alone
or in combination with elevated temperature, dominated all
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FIGURE 7 | Relative change in abundance (%) for specific PSM compounds when compared to our baseline treatment for Year 3 (cold region, closed overstory) for
(A) balsam fir and (B) paper birch. Neither resin acid in balsam fir was influenced by warming. In paper birch, relative abundance of catechin was only influenced by
the combination of light and high temperatures, increasing by more than 250%. Terpene acid was unaffected, regardless of stress condition. Error bars represent the
95% boot-strapped confidence intervals and relative abundances significantly different than those found in the reference condition are identified by an asterisk (∗).

of the large-scale shifts we assessed in which it was present
(Year 3). As noted above, numerous studies have reported
that drought has a defining impact on plants’ phytochemical
profiles, even when in combination with other abiotic drivers,
such as elevated temperature and high light. Moreover, in
our Year 1 samples, elevated temperature led to both large-
scale increases and large-scale decreases in relative abundance.
However, the number of compounds exhibiting these shifts
was substantially smaller when compared to the number of
compounds influenced by the abiotic conditions evaluated in
either Year 2 of our experimental samples or our observational
samples (Year 3). Outside of Year 1, during which we
tested only the effects of elevated temperature, it was rare
when the same abiotic condition simultaneously dominated
both large-scale increases and large-scale decreases in relative
abundance, suggesting that different combinations of abiotic
factors may influence upregulation and downregulation of
different compounds.

Changes in the abundance and diversity of secondary
metabolites within a plant’s phytochemical profile may alter
biotic interactions, potentially leading to broad-scale ecological
change. For example, while some herbivores respond negatively
to forage with a higher diversity of PSMs, others appear to
target these plants in an effort to alleviate costs associated with
external stressors via their pharmacological benefits (Forbey and
Hunter, 2012). Additionally, numerous studies have reported that
phytochemical diversity within a plant community is positively
correlated with community diversity across multiple trophic
levels (Jones and Lawton, 1991; Richards et al., 2015), influencing
invertebrate predators and parasitoids, and potentially extending
to vertebrate predators as well (Dicke et al., 2012).

While the consequences of different abiotic conditions
on phytochemical diversity remain unpredictable, our results

demonstrate that the phytochemical response of plants to
combinations of abiotic factors cannot be extrapolated from
that of individual factors. For instance, while warming alone
may have a very specific influence on some compounds,
when in combination with additional abiotic factors such as
drought and light, warming may lead to highly variable and
unpredictable response (Mittler, 2006), making it increasingly
difficult to predict the performance of woody plants in a
changing environment. Regardless, previous research suggests
that changes in phytochemical production induced by variability
in abiotic conditions can influence both tree resistance and pest
performance traits (Jamieson et al., 2015), potentially altering
the frequency and intensity of insect outbreaks (Schwartzberg
et al., 2014). Elevated temperatures by themselves have been
shown to reduce the competitive abilities of more southern
boreal tree species when compared to co-occurring species
adapted to warmer climates (Reich et al., 2015). Climate-induced
changes to phytochemistry may lead to shifts in the competitive
landscapes for cold-adapted trees and shrubs, potentially altering
their ability to compete for resources and defend against
pests and pathogens in novel climatic conditions. However,
because individual compounds and the metabolic profiles of
which they are a part are differentially influenced by abiotic
factors and combinations of these factors, predicting how forest
plants will respond to novel environmental conditions will be
challenging.

The majority of biotic interactions between plants and
other organisms are chemically mediated, and recent climate
change has challenged our understanding of the mechanisms
underlying these interactions. The primary objective of
this study was to determine how warming influences plant
production of secondary metabolites and how combinations
of additional abiotic factors may modulate this effect.

Frontiers in Plant Science | www.frontiersin.org 14 August 2018 | Volume 9 | Article 1257

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01257 August 23, 2018 Time: 19:45 # 15

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

Berini et al. Abiotic Conditions Differentially Alter PSMs

Here, we show that heterogeneity in a range of abiotic factors
broadly influence secondary chemistry in plants thereby leading
to condition-specific phytochemical profiles. If our results
are typical of plant responses, abiotically induced changes to
secondary chemistry in woody plants could influence their
rate of range expansion or contraction under novel climate
scenarios. Additionally, our results contribute to current efforts
to understand how continued warming will influence plants and
the biotic interactions that serve as the foundation for a wide
range of ecosystem processes. In the future, studies monitoring
physiological changes in conjunction with global shifts in PSM
profiles would provide insights into mechanisms underlying
biotic interactions mediated by the local environment. As spatial
and temporal patterns in the global abiotic environment continue
to shift, it is imperative that we continue to learn as much as
we can about the phytochemical response of plants to these
changes.
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Abstract

Context Animals selectively use landscapes to meet

their energetic needs, and trade-offs in habitat use may

depend on availability and environmental conditions.

For example, habitat selection at high temperatures

may favor thermal cover at the cost of reduced

foraging efficiency under consistently warm

conditions.

Objective Our objective was to examine habitat

selection and space use in distinct populations of

moose (Alces alces). Hypothesizing that endotherm

fitness is constrained by heat dissipation efficiency, we

predicted that southerly populations would exhibit

greater selection for thermal cover and reduced

selection for foraging habitat.

Methods We estimated individual step selection

functions with shrinkage for 134 adult female moose

in Minnesota, USA, and 64 in Ontario, Canada, to

assess habitat selection with variation in temperature,

time of day, and habitat availability. We averaged

model coefficients within each site to quantify selec-

tion strength for habitats differing in forage availabil-

ity and thermal cover.
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Results Moose in Ontario favored deciduous and

mixedwood forest, indicating selection for foraging

habitat across both diel and temperature. Habitat

selection patterns of moose in Minnesota were more

dynamic and indicated time- and temperature-depen-

dent trade-offs between use of foraging habitat and

thermal cover.

Conclusions We detected a scale-dependent func-

tional response in habitat selection driven by the trade-

off between selection for foraging habitat and thermal

cover. Landscape composition and internal state

interact to produce complex patterns of space use,

and animals exposed to increasingly high tempera-

tures may mitigate fitness losses from reduced forag-

ing efficiency by increasing selection for foraging

habitat in sub-prime foraging landscapes.

Keywords Alces � GPS � Habitat selection � Heat
stress � Lasso � Model selection � Moose � Movement

Introduction

Animal fitness is constrained by energetic considera-

tions—that is, organisms must take in enough energy

to maintain internal conditions, grow, and reproduce.

This observation implies an economy of energy

central to animal ecology, where the rate of energy

output is balanced by the rate of energy input. In this

supply-expenditure framework, ecologists frequently

consider the supply component in the form of resource

acquisition, processing, and energy storage. This has

led to the idea that metabolic rates scale with body size

and temperature, and that energy and resources are

fundamentally and functionally relatable (i.e., the

metabolic theory of ecology; Brown et al. 2004). The

underlying assumption of such studies is that energy

supply is the primary constraint on individual fitness;

organisms attempt to meet an energy budget wherein

they must acquire enough resources (or have enough

in storage) to maintain homeostatic conditions while

still producing and supporting offspring. Other studies

have highlighted the importance of energy expendi-

ture in balancing the metabolic equation. For example,

an organism’s maximum energetic expenditure may

be limited by the combined metabolic rates of its

component tissues (Hammond and Diamond 1997) or

by its ability to dissipate heat (Speakman and Król

2010), and expenditure may sometimes supersede

supply considerations, particularly under energy rich

conditions. These two perspectives differ in which

side of the energy equation is given priority—supply

or expenditure—but both extol the importance of

different components of a complex and dynamic

system of energetic trade-offs.

If energy budget is a primary driver of animal

fitness, it naturally follows that animals select habitat

based on energetic considerations. Much research on

energy acquisition has centered on foraging efficiency

(e.g., Charnov 1976; Ritchie 1990; Illius et al. 1995),

and how foraging considerations influence selective

use of associated landscapes (e.g., Fryxell et al. 2008;

Owen-Smith et al. 2010; Mitchell and Powell 2012).

Comparatively little research has focused on energetic

expenditure as a driver of space use and habitat

selection and how it may influence fitness, particularly

in endotherms (but see Aublet et al. 2009; Speakman

and Król 2010; Van Beest et al. 2012). From this

perspective, animals may exhibit preferences for

habitats that reduce expenditure, for example by

facilitating movement (Avgar et al. 2013) or by

providing thermal cover (Van Beest et al. 2012; Street

et al. 2015). Preference for habitats providing foraging

opportunities or thermal cover should vary across the

diurnal cycle and is likely dependent on animal state

(e.g., hunger, thermal stress) and environmental

context (Fryxell et al. 2008; Avgar et al. 2013). That

environmental and landscape conditions are not con-

stant over space can further alter both the supply and

expenditure components of the energy equation, often

simultaneously, thus a full examination of the relative

importance of energy supply versus expenditure

requires data across broad spatiotemporal extents

and bioclimatic gradients to capture variation in

habitat use across a variety of conditions and contexts.

Our objective was to investigate the influence of

temperature and time of day on patterns of habitat

selection and movement in an endothermic animal, the

moose (Alces alces). Moose are generalist browsers

that exhibit a strong preference for deciduous vege-

tation types (Belovsky 1981). They are also cold-

adapted and exhibit physiological responses associ-

ated with heat stress at temperatures as low as 14 �C in

the summer and -5 �C in the winter (Renecker and

Hudson 1986). As such, the interaction between

deciduous forage availability and temperature is often

considered a primary driver of the southern limit of
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moose population ranges. For example, Street et al.

(2015) described changes in habitat selection by

moose toward habitats providing thermal cover with

increasing temperature at mid-day, suggesting that

temperature regulation plays a role in moose behavior

and space use at temperatures approaching moose

thermal optima. However, this study was limited to a

single population of moose and to locations at mid-day

only. Such limitation is acceptable to the extent that

habitat selection may be mediated by individual

internal state (e.g., temperature) but is insufficient to

fully characterize the relationship between tempera-

ture and behavior if that relationship is not consistent

across space or time of day (Avgar et al. 2013).

Alternatively, moose populations may be regulated at

the southern extent of their range by factors including

parasite loads (Murray et al. 2006) and predation

(Mech and Fieberg 2014). Evaluating the potential for

temperature to influence moose space use across

landscapes would provide additional information

about the realized niche of this species while simul-

taneously advancing our understanding of the inter-

play between biotic and abiotic conditions in shaping

patterns of animal space use.

We estimated models of habitat selection and

movement of individual moose across two study sites

(northern Minnesota, USA, and northwest Ontario,

Canada) representing ecologically distinct populations

occupying landscapes of different composition. Given

the hypothesis that endotherm fitness is constrained by

efficiency of heat dissipation (Speakman and Król

2010), we predicted that (1) selection for land cover

types by moose would vary with temperature and time

of day, consistent with prior observations; and (2)

moose in landscapes characterized by a higher abun-

dance of thermal cover would select less strongly for

these habitat types than moose in landscapes with

limited shelter (or, more generally, that estimated

selection for different landscape components is unique

to a particular combination of habitat availability and

environmental conditions).

Methods

Study area

This comparative study was conducted at two sites:

one in northeast Minnesota at 47�500N, 92�80W; and

the other in northwest Ontario at 49�150N, 92�450W
(Fig. 1).

The southern site is located inMinnesota’s Northern

Superior Uplands forest region northwest of Lake

Superior (Hanson and Hargrave 1996). The northern

site is located northwest of Ontario’s Quetico Provin-

cial Park on the Quetico-Great Lakes-St. Lawrence/

boreal forest boundary (Rowe 1972). Both sites are a

matrix of forested stands and wetlands (e.g., bogs,

lakes). Dominant tree species are consistent between

sites and include white spruce (Picea glauca), black

spruce (Picea mariana), and jack pine (Pinus bank-

siana). Balsam fir (Abies balsamea), white birch

(Betula papyrifera), and trembling aspen (Populus

tremuloides) are interspersed throughout both sites.

Both sites are primarily disturbed by forest fire and are

subject to timber harvest. Moose co-occur throughout

both study sites with white-tailed deer (Odocoileus

virginianus) and are primarily predated upon by gray

wolves (Canis lupus) and black bears (Ursus

americanus).

Data

In Minnesota throughout January and February from

2010 to 2015, technicians captured 170 adult female

moose by netgunning or aerial darting from a

helicopter using carfentanil (4.5 or 6.0 mg) or thifen-

tanil (16 mg) and xylazine (100 or 150 mg) as

immobilizing agents, and naltrexone (245–575 mg)

and tolazoline (400 mg) as reversal agents. Moose

were fitted with Iridium Global Positioning System

(GPS) radiocollars (VECTRONIC Aerospace GmbH,

Berlin, Germany; and Sirtrack Ltd., Hawkes Bay, New

Zealand). Animal handling followed American Soci-

ety of Mammalogists wild animal care guidelines

(Sikes, Gannon & the Animal Care and Use Commit-

tee of the American Society of Mammalogists 2011).

Collars recorded animal locations at 4.25, 2, and

1.065-h intervals, depending on region and study

schedules. We subsampled data collected at higher

sampling rates to achieve a consistent 4.25-h fix

rate ±0.25 h. See Carstensen et al. (2014) for more

details.

In Ontario from 1995 to 2001, technicians captured

122 adult female moose by netgunning from a

helicopter throughout the northern study site and

deployed NAVSTAR GPS radiocollars (LOTEK

Engineering Inc., Newmarket, Ontario) on each.
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Capture and collaring procedures followed Canadian

Council on Animal Care Guidelines and were

approved by the Ontario Ministry of Natural

Resources and Forestry Animal Care Committee.

Collars recorded animal location at approximately

4-h intervals throughout the year, with frequent gaps

between 4-h fixes. We resampled these data to achieve

a consistent 4-h fix rate ± 0.25 h. For more details,

see Rodgers et al. (1996) and Street et al. (2015).

Captures in Minnesota took place from January 22 to

February 9, and in Ontario from January 24 to

February 22, in each year in the respective datasets.

We included only 3-dimensional, differentially cor-

rected fixes with horizontal dilution of precision

(HDOP)\10, providing a location accuracy of 3–7 m

(Rempel and Rodgers 1997). We removed all fixes

within 24 h of collar deployment or following animal

mortality as reported by the collar and verified by field

technicians.We limited our analysis to summer (June 1–

September 30) to achieve in-season constancy in habitat

covariates such as flowering phenology (Street et al.

2015). After resampling, 8077 fixes (range per individ-

ual = 1–442, mean = 79) remained for 98 individuals

in Ontario, and 112,057 fixes (range per individ-

ual = 13–1983, mean = 837) remained for 134 indi-

viduals in Minnesota. We excluded animals with fewer

than 10fixes (34 animals), giving a total of 120,134fixes

from 198 adult female moose for this analysis.

We created an aggregate land cover classification

system using the Ontario Provincial Land Cover 2000

Fig. 1 Map of study sites.

Insert indicates general

location of study sites

relative to Ontario and

Minnesota. Triangles

represent NOAA or

Environment Canada

weather stations
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(OLC; Anonymous 2004), available from Land Infor-

mation Ontario (LIO; https://www.javacoeapp.lrc.

gov.on.ca/geonetwork/srv/en/main.home), and the

U.S. National Land Cover Database 2011 (NLCD; Jin

et al. 2013), available from the Multi-Resolution Land

Characteristics Consortium (MRLC; http://www.

mrlc.gov/nlcd2011.php), at 25 and 30 m2 resolu-

tions, respectively. We aggregated OLC and NLCD

land cover classifications into common classifications

based on similarities in class descriptions (Table A1 in

supplementary materials). Land cover datasets may

differ in their definitions of cover types; the primary

difference between our OLC and NLCD datasets is

how forest types are classified. For example, OLC

named forest stands (i.e., deciduous, coniferous) are

considered dense forest, and non-dense forests are

lumped into a ‘‘sparse forest’’ category that may be

either predominately deciduous or coniferous, but no

distinction is made based on dominant vegetation type

(Anonymous 2004). NLCD forest types are classified

based on[20 % coverage by trees and a 75 %

threshold in coverage by conifer or deciduous trees,

and the NLCD has no analogous sparse cover classi-

fication (Jin et al. 2013), prohibiting the use of the

OLC sparse category here. As such, the Ontario

dataset may have a lower abundance of deciduous

habitat than might be represented on the landscape

based on the prevalence of sparse deciduous forests.

To examine whether aggregated land cover classes

were informative, we conducted cross validation of

models of habitat selection (see ‘‘Analysis’’ section,

below). Additionally, habitats can generally be ranked

in terms of foraging quality based on the availability of

deciduous foliage (Peek et al. 1976; Belovsky 1981),

but the use of remotely sensed land cover data clearly

prohibits an explicit evaluation of habitat quality.

Although GPS collars recorded temperature (�C),
these data are biased by numerous factors such as

position on the animal, pelage, activity level, heat loss

via radiation, etc. (Van Beest et al. 2012). Conse-

quently, we associated used and available locations

with ambient temperature data as recorded by the

NOAA or Environment Canada weather station clos-

est to a given fix in space and time. Ambient

temperatures used in this fashion are highly correlated

with collar data and better represent the conditions

experienced by an individual that may influence

habitat selection (Street et al. 2015). Used locations

were on average 17.76 km (Minnesota range

0.41–72.46; Ontario range 25.57–127.90) from the

nearest weather station and 0.13 h (Minnesota range

0–2.86; Ontario range 0.01–0.98) from the closest

recorded weather observation in time.

Analysis

We estimated models of habitat selection using step-

selection functions (SSFs; Thurfjell et al. 2014). SSFs

use a case–control design wherein the occurrence of a

case (i.e., a used fix/step) is conditional to the

availability of controls (i.e., available locations where

a fix was not recorded) selected based on where a fix

could have occurred given the observed distributions

of step lengths and turn angles. Used and available

locations associated with each step form strata, and the

SSF is estimated using conditional logistic regression.

The SSF methodology thus constrains the availability

of environmental covariates in time and space to the

movement characteristics of an individual and is

commonly used to study animal movement in hetero-

geneous landscapes (Forester et al. 2009; Thurfjell

et al. 2014).

Selecting available points using the empirical (i.e.,

observed) distributions of step lengths and turn angles

requires three sequential fixes at the defined fix rate,

and frequent gaps in a dataset will reduce the

frequency of these instances. We selected available

points using parametric distributions of step length

between two consecutive fixes and bearing relative to

true north (Forester et al. 2009). We estimated the rate

of exponential decay (k) of the observed step lengths

of each individual and sampled step lengths from an

exponential distribution with the estimated k. We

sampled bearings from a uniform distribution from 0

to 2p. Sampling in this fashion naturally oversamples

around the used point due to increasing area of a

circular sector with increasing distance from the used

point (i.e., hyperdispersion of points increases with

distance from the centroid). We transformed sampled

step length l as the square root of the ratio between the

observed sampled step length and the maximum

sampled step length for an individual times the

squared maximum sampled step length,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lobserved=lmaxð Þ � l2max

p

, to correct for oversam-

pling. We paired 10 available points to each used fix

(i.e., 11 points per stratum). We modeled the proba-

bility of selecting each point within a stratum as a
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function of proportional coverage of each of 5 land

cover types (deciduous, coniferous, mixedwood,

water, and treed wetlands) within a circular 50 m

radius buffer. Other land cover types (e.g., grassland,

developed) typically comprised 12 % of buffers but

were not explicitly included in the regression (i.e.,

they serve as a reference category for the other cover

types). We also included the step length (i.e., distance

between consecutive fixes) to accommodate any bias

introduced by using parametric distributions of step

length (Forester et al. 2009). We included interactions

between these main effects and (1) temperature (�C),
centered on previously reported summer thresholds for

heat stress in moose (i.e., 14 �C; Renecker and Hudson
1986) such that positive values represented tempera-

tures likely exceeding moose thermal neutral zones,

and (2) the time of day a fix was recorded, transformed

using four circular time harmonics, sin(2pt/24),
sin(4pt/24), cos(2pt/24), and cos(4pt/24), to assess

changes in habitat selection across the diurnal cycle

(Forester et al. 2009). Four time harmonics were

included to accommodate individual variation in

activity patterns—that is, an individual may be more

active during peak light/dark periods than crepuscular

periods, or may exhibit more than one or two peak

periods of activity. Because both temperature and time

of day were constant within strata, they were consid-

ered only as interaction terms. In total, we estimated

six main effects and five interactions per main effect

(i.e., 36 coefficients). This model structure permits

evaluation of whatever temperature effect on habitat

selection remains after accommodating the time of day

effect on selection patterns.

We estimated these models separately for each

individual animal in the Minnesota and Ontario

datasets. Averaging the individual regression coeffi-

cients within a given dataset produced the population-

level coefficients and confidence intervals reported in

Table A2 in supplementary materials. Such averaging

accommodates within-animal variation in habitat

selection and approximates a mixed effects modeling

approach (Fieberg et al. 2010) but effectively reduces

sample size for any estimated model. If sample sizes

are small or model predictors are highly correlated, the

variance of coefficients estimated by standard statis-

tical models is often quite large. Modern telemetry

data are typically not sample size limited, but corre-

lated variables compounded by the dynamic nature of

animal relocation typically produce low explanatory

power of fitted models and unreliable out-of-sample

prediction (Beyer et al. 2010). We thus fitted our SSFs

using conditional logistic regression with lasso (least

absolute shrinkage and selection operator; Reid and

Tibshirani 2014). The lasso maximizes the likelihood

of the data subject to a constraint, determined by an

additional tuning parameter (s), that limits the

summed absolute value of model coefficients (Tibshi-

rani 1996). When s is very large (i.e., approaching

infinity), the lasso produces coefficients identical to

ordinary regression; at values of s approaching 0, the

lasso reduces the coefficients of uninformative pre-

dictors. This framework offers an appealing alterna-

tive to model averaging when the number of predictors

is large relative to effective sample size (Hooten and

Hobbs 2015). We selected our model coefficients as

the estimates minimizing the cross validation statistic

(Reid and Tibshirani 2014).

We binned used and available locations by the hour

in which a fix was recorded and the ambient temper-

ature as reported by the nearest weather station. We

calculated the average proportional cover by land

cover types in used and available locations across bins

to visualize how used and available cover change

across both diurnal and temperature gradients in both

study sites and fit lowess regressions to both used and

available bins to generate smoothed proportional

coverage curves (Figs. 2, 3). We also calculated

model-based estimates of selection strength (i.e., log

relative risk) for each land cover class across time of

day and temperature, holding either temperature

constant at the upper thermoneutral limit of moose

(i.e., DT = 0 �C; Renecker and Hudson 1986) for

time of day plots, or time of day constant at noon

(1200 h) for temperature plots (Figs. 4, 5). We ranked

the predicted selection strength at a given time or

temperature to evaluate changes in relative selection

strength across the diurnal cycle and temperature

gradient, including selection for land cover types not

included in the models (i.e., predicted selection = 0).

Lastly, we conducted a separate cross validation

procedure for our step selection models based on a

comparison of observed use of land cover covariates

versus expected values predicted by the models.

Specifically, we:

1. Fit step selection models to data from either

Ontario or Minnesota. The data used to fit the

model correspond to ‘‘training data’’. The data
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that were not used in this step were treated as ‘‘test

data’’.

2. Using the fitted model from step [1], we estimated

the probability of choosing each location (both

used and available) in the test data:

p̂i;k ¼
expðxi;kbÞ

P11
j¼1 expðxj;kbÞ

;

i ¼ 1; 2; . . .; 11; k ¼ 1; 2; . . .; nstratað Þ;

where i indexes a location (used or available)

within stratum k, xj,k is a vector of covariate data

for the j-th observation in stratum k, b is a vector

of model coefficients, and nstrata gives the number

of strata (equivalent to the number of used

locations).

Given the estimated probabilities p̂i,k, we calculated

the expected proportional cover of the p-th land cover

class in stratum k, E[Zk
p], as:

E½Zp
K � ¼

X

11

i¼1

p̂i;kZ
p
i;k;

where Zi,k
p is a scalar, representing the proportional

cover of the p-th land-cover class associated with the i-

th observation within stratum k.

We then plotted the average observed and expected

values for each land-cover class across both

Fig. 2 Average used (solid lines and circles) and available

(dashed lines and triangles) proportional representation within

50 m buffers of land cover classifications included in the

analysis during summer (June 1–September 30) in Minnesota.

Patterns of use and availability change across both time of day

(left column) and temperature (�C) scaled to moose (A. alces)

upper thermal optima (right column)
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temperature and time of day to validate model fit

across study sites (Figs. A1, A2, Supplemental Mate-

rials). Models and aggregated land cover were

considered informative if observed patterns of use

coincided with expectation.

All work was conducted using the base packages of

Program R (R Core Team 2015) and the clogitL1

package (Reid and Tibshirani 2014).

Results

Cross validation of SSFs demonstrated high predictive

accuracy of our models across sites (Figs. A1, A2 IN

supplementary materials), indicating that the aggre-

gated land cover classification was informative and

that our models capture variation in habitat selection

across sites. We detected changes in proportional

cover of land cover types associated with used

locations in Minnesota across both time of day and

temperature. On average, proportional cover of decid-

uous habitat decreased, and coniferous and treed

wetland increased, in used locations at mid-day

(Fig. 2). At all times of day deciduous cover was

higher and coniferous cover lower in used locations

compared to available locations. By contrast, treed

wetland cover was greater at used relative to available

locations only at mid-day, consistent with a switch

toward positive selection for treed wetlands from

approximately 0900–1800 h. Proportional coverage of

Fig. 3 Average used (solid lines and circles) and available

(dashed lines and triangles) proportional representation within

50 m buffers of land cover classifications included in the

analysis during summer (June 1–September 30) in Ontario.

Patterns of use and availability change across both time of day

(left column) and temperature (�C) scaled to moose (A. alces)

upper thermal optima (right column)
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Fig. 4 Predicted selection strength (log relative risk, solid

lines) by moose (A. alces) with 95 % Confidence Intervals

(dashed lines) for 100 % cover by land cover classifications

during summer (June 1–September 30) inMinnesota across both

time of day (left column) and temperature (�C) scaled to moose

upper thermal optima (right column). Temperature is held

constant at the moose upper thermal optimum (i.e., DTemper-

ature = 0 �C) in time of day plots, and time is held constant at

noon in DTemperature plots. Bottom panels indicate relative

rank of selection strength for each land cover class (D deciduous;

C coniferous;Mmixedwood;Wwater; T treed wetland;O other)

across the diurnal cycle and temperature gradient
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deciduous and mixedwood associated with used

locations declined with increasing temperature, and

coniferous and treed wetlands increased with temper-

ature. All four coverage types experienced a switch in

directionality of use:availability ratios at temperatures

exceeding approximately 10 �C above moose thermal

optima (i.e., *24 �C; Fig. 2).
Conversely, proportional cover associated with

used and available locations in Ontario was less

dynamic. We detected a marginal decline in treed

wetland use and an increase in coniferous cover across

time of day, but proportional cover at both used and

available locations was otherwise consistent across the

diurnal cycle (Fig. 3). Use of conifer increased, and

use of mixedwood decreased, at warmer temperatures,

but use of other land cover types exhibited little to no

change in use across temperature. Thus between study

sites we observed similar patterns of use of conifer

with time of day, and conifer and mixedwood with

temperature, but different patterns of use of deciduous

and treed wetland habitats.

Predicted selection strength (i.e., log relative risk of

selection) for the five land cover classifications was

also inconsistent between sites. In Minnesota selection

for deciduous, coniferous, mixedwood, and treed

wetland stands notably increased at mid-day (Fig. 4).

Despite increased selection strength for deciduous at

mid-day, ranked relative selection strength was high-

est for mixedwood and treed wetland at mid-day

(Fig. 4, bottom left), with ranked selection for decid-

uous declining at mid-day, consistent with our empir-

ical findings (Fig. 2). Predicted selection strength for

all cover types, relative to the ‘‘other’’ category (what

was left out of the model, i.e., selection strength = 0),

consistently increased across the temperature gradient

(Fig. 4). Yet, ranked selection among all land cover

types indicated declining selection for deciduous at

high temperatures, and increased selection for treed

wetlands, conifer, and mixedwood (Fig. 4, bottom

right). Selection for water was consistently low across

the temperature gradient.

In Ontario, predicted selection strength for water,

deciduous, mixedwood, and treed wetland habitat was

relatively invariant across time of day (Fig. 5).

Selection for conifer increased at mid-day, consistent

with predicted selection in Minnesota. Ranked selec-

tion strength indicated selection primarily favored

mixedwood across the diurnal cycle, and selection for

deciduous habitat peaked at night and early morning

(Fig. 5, bottom left). Ranked selection for conifer

peaked at mid-day, but treed wetland, conifer, and

water were generally avoided. Selection strength,

relative to ‘‘other’’, increased only for conifer and

mixedwood habitat as temperature increased (Fig. 5).

This pattern was also observed in ranked selection,

with selection for conifer and mixedwood increasing

across the temperature gradient (Fig. 5, bottom right).

Discussion

We found that habitat use by moose varied between

two study sites differing primarily in latitude and

landscape composition. In Ontario, proportional cov-

erage of foraging stands (i.e., deciduous, mixedwood)

was higher at used than available locations; non-

foraging stand coverage was used less than its

availability. In contrast, moose in Minnesota exhibited

marked changes in patterns of habitat use across both

time of day and temperature, most notably a decline in

the use of deciduous and an increase in coniferous and

treed wetland at mid-day. Use of these habitats may

result in reduced foraging efficiency if quantity/

quality of forage is lower than in deciduous stands

(Peek et al. 1976; Belovsky 1981) and points to the

importance of abiotic environmental conditions driv-

ing habitat selection patterns of moose in Minnesota.

However, ranked selection was consistent between the

two sites, with selection for conifer peaking around

mid-day and at the highest temperatures. These results

suggest that moose primarily select habitat during the

summer based on foraging considerations (i.e., energy

acquisition) except at the highest temperatures, con-

sistent with previous studies (Peek et al. 1976;

Belovsky 1981; Van Beest et al. 2012; Street et al.

2015).

We detected an increase in selection strength for all

land cover types, relative to an ‘‘other’’ category (i.e.,

what was not in the model), as a function of

temperature in Minnesota (Fig. 4). However, ranked

selection declined for deciduous habitat and increased

for coniferous, mixedwood, and treed wetlands with

increasing temperature. This indicates a change in

preference for habitat types across the temperature

gradient and should produce a detectible shift in space

use and distribution (Beyer et al. 2010), particularly at

high temperatures. Indeed, at high temperatures

moose in Minnesota used deciduous habitat
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Fig. 5 Predicted selection strength (log relative risk, solid

lines) by moose (A. alces) with 95 % confidence intervals

(dashed lines) for 100 % cover by land cover classifications

during summer (June 1–September 30) in Ontario across both

time of day (left column) and temperature (�C) scaled to moose

upper thermal optima (right column). Temperature is held

constant at the moose upper thermal optimum (i.e., DTemper-

ature = 0 �C) in time of day plots, and time is held constant at

noon in DTemperature plots. Bottom panels indicate relative

rank of selection strength for each land cover class (D deciduous;

C coniferous;Mmixedwood;Wwater; T treed wetland;O other)

across the diurnal cycle and temperature gradient
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substantially less than at lower temperatures, favoring

instead conifer and treed wetlands (Fig. 2). Thus at

temperatures exceeding moose thermal optima (Re-

necker and Hudson 1986), moose in Minnesota

selected more strongly for those habitats providing

thermal cover—that is, conifer and treed wetlands

(Peek et al. 1976; Belovsky 1981; Van Beest et al.

2012; Street et al. 2015). It is worth noting that during

the night and at low temperatures, the ‘‘other’’

category was actually most favored based on ranked

selection (Figs. 4, 5), suggesting that during these

periods moose may utilize habitat types not repre-

sented in our models (e.g., agricultural land, shrub-

lands). These habitat types may provide additional

foraging or bedding opportunities that we do not

consider here, but universally these habitat types do

not provide cover of any sort, which may be why they

are favored at night when moose will be harder to

detect and during cooler periods when temperatures

are not limiting. Further research on selection and use

of non-forested or ‘‘sub-prime’’ foraging habitats

would further enlighten this observation, but we lack

sufficient data to address this here.

If moose exposed to elevated ambient temperatures

alter habitat selection toward thermal cover, why did

moose in Ontario not substantially alter their habitat

use (not selection) at high temperatures? Neither study

site was substantially warmer on average than the

other during data collection (15.8 and 14.6 �C in

Ontario andMinnesota, respectively), but the two sites

differ markedly in proportional coverage by land

cover types. The Minnesota site contains a larger

proportion of deciduous cover than Ontario, which in

turn has twice as much dense mixedwood and very

little deciduous cover (Figs. 2, 3). Reduced availabil-

ity of deciduous habitat in Ontario may be

attributable to differences in OLC and NLCD decid-

uous forest classification (see ‘‘Methods’’ section;

Anonymous 2004, Jin et al. 2013), but the increased

availability of dense mixedwood forest is telling.

Mixedwood stands simultaneously provide foraging

opportunities and thermal cover (Belovsky 1981; Van

Beest et al. 2012), thus moose in high mixedwood

landscapes such as Ontario are commonly in sufficient

thermal cover regardless of time or location. These

findings suggest that moose in Ontario are only forced

to modify their habitat preferences under the most

thermally stressful conditions (e.g., high temperatures

at mid-day; Street et al. 2015), which is corroborated

by evidence that moose in southern Ontario typically

do not exhibit the population declines expected at the

southern extent of the species range (Murray et al.

2012). Conversely, the Minnesota site contains a

greater abundance of deciduous vegetation, which

provides ample vegetation but a less dense canopy,

thus moose in this site have the opportunity to

consistently select forage-rich environments that

provide less thermal cover. Ironically, it is by virtue

of living in a landscape of greater forage abundance

that moose in Minnesota may experience foraging

limitations under thermally stressful conditions,

whereas moose in Ontario appear to be freed from

this constraint.

The primary implication of these findings, then, is

that foraging animals may experience a trade-off

between acquiring resources (i.e., energy intake) and

maintaining homeostatic conditions (i.e., energy

expenditure) across environmental gradients (Speak-

man and Król 2010). Reducing net energy intake by

reducing foraging opportunity has negative effects on

animal fitness (Ritchie 1990; McLoughlin et al. 2006,

2007; Hodson et al. 2010), and selection for thermal

cover in lieu of foraging habitat could result in reduced

body mass and lifetime reproductive success (Van

Beest et al. 2012; Monteith et al. 2015). However,

recent research has demonstrated that reducing ener-

getic expenditure by increasing efficiency of heat

dissipation is an important component of endotherm

fitness and may contribute more to net fitness in some

circumstances than energy supply (Speakman andKról

2010). This seems particularly plausible if animals

change their habitat preferences in response to land-

scape composition and abiotic conditions (i.e., habitat

functional response; Mysterud and Ims 1998). Under

conditions of thermal stress, animals exhibiting a

functional response for habitat selection might utilize

thermal cover more frequently while simultaneously

increasing selection strength for high quality foraging

habitat to compensate. We detected a significant

increase in selection for deciduous habitat both at high

temperatures and at mid-day by moose in Minnesota

(Fig. 4) concurrent with declining average use of

deciduous habitat (Fig. 2), suggesting that the habitat

functional response occurs as moose attempt to miti-

gate the potentially adverse effect of reduced foraging

opportunity caused by increased use of thermal cover.

How successful this strategy may be is likely

variable across landscapes. For example, Lenarz et al.
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(2010) found that moose in Minnesota exhibit net

negative population growth and suggested that this

decline is attributable to increasing temperatures

during winter. Monteith et al. (2015) found similar

results for moose in the U.S. Rocky Mountains due to

both increasing summer temperature and changes in

flowering phenology. In contrast, moose populations

in southern Ontario are on average stable or increasing

(Murray et al. 2012), despite experiencing tempera-

tures comparable to or greater than those described

here or in other studies (Lenarz et al. 2010; Monteith

et al. 2015). These studies state that changes in moose

demographic rates and survivorship may be explained

by changes in forage availability or increasing heat

stress, but they agree that the precise mechanism

driving population level responses to climate change

requires investigation. We suggest that landscape

configuration may be the mechanism explaining these

discrepancies across regions. The functional response

may permit reduction or negation of the fitness costs

associated with reduced foraging habitat availability,

allowing animals to modify behavior to both maxi-

mize energy intake and minimize energy expenditure

given a certain environmental context. Although we

focus on one example of how this functional response

may arise—that is, through temperature-mediated

changes in habitat selection—the habitat functional

response could mitigate fitness loss due to any changes

in space use. Our understanding of endotherm fitness

would benefit from an explicit assessment of the

contribution of discrete habitat types to fitness across

changes in both landscape composition and abiotic

conditions. Research synthesizing fitness and space

use would permit investigation of explicit hypotheses

of drivers of population decline across bioclimatic and

latitudinal gradients and would be invaluable to the

ecology and management of this and other species of

concern.

Although the SSF methodology is now widely used

in habitat selection and movement studies (Thurfjell

et al. 2014), our use of the lasso is relatively

uncommon in the ecological literature (Dahlgren

2010, but see Hooten and Hobbs 2015). The lasso

places a cap on the sum of the absolute value of the

regression coefficients and is a form of regression

shrinkage (Tibshirani 1996; Dahlgren 2010; Reid and

Tibshirani 2014). Shrinkage reduces the magnitude of

regression coefficients associated with statistically

unimportant variables and improves prediction

accuracy, a common shortcoming of habitat selection

models (Fielding and Bell 1997; Beyer et al. 2010).

Further, the lasso can be used for variable selection in

cases where the number of parameters is large relative

to effective sample size since uninformative predictors

can be (and often are) reduced to 0 (Tibshirani 1996;

Dahlgren 2010; Giudice et al. 2012). Currently, model

selection in ecology is most often achieved using

information theoretic criteria (Burnham and Anderson

2002; Stephens et al. 2005; Giudice et al. 2012).

Although extremely flexible and useful when properly

employed, some authors (e.g., Stephens et al. 2005,

Giudice et al. 2012) have noted that over-reliance on

information theoretic methods may lead to under-

consideration of alternative hypotheses and ecological

phenomena, instead depending on a suite of competing

models to suggest ecological significance. Shrinkage

estimators provide an alternative to information the-

oretic methods while requiring deeper consideration

of the hypotheses and ecology under investigation.

Given their utility and the availability of packages in

most statistical software, these methods are a valuable

tool for ecologists and managers and should be

considered alongside other alternatives such as infor-

mation theoretic methods (Babyak 2004; Giudice et al.

2012; Fieberg and Johnson 2015; Hooten and Hobbs

2015).

Investigating animal space use across spatially

distinct regions allows researchers to investigate how

environmental and geographic gradients influence

habitat selection, space use, and movement patterns

(Matthiopoulos et al. 2011). Here we demonstrate a

strong effect of temperature, diurnal cycles, and

landscape composition on patterns of habitat selection

and space use, and identify a functional response in

selection for foraging habitat driven largely by

increased use of thermal cover. We suggest that the

habitat functional response may serve as a mechanism

mitigating fitness loss due to changes in space use

which reinforces the importance of accommodating

broad scale bioclimatic variation in studies of habitat

selection. Habitat selection is context dependent, and

similar models of habitat selection may produce

markedly different realized patterns of space use

driven by differences in landscape composition.

Further studies examining how environmental factors

(e.g., predator pressure, disturbance, weather) influ-

ence variation in fitness due to individual space use

will provide insight into the ecological processes
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driving population dynamics and distributions across

spatiotemporal scales.
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