

Geology and Origin of Mystery Cave Forestville State Park, Minnesota

TECHNICAL REPORT

LCMR Mystery Cave Resources Evaluation

Arthur N. Palmer Margaret V. Palmer 1993

This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.)

MiniteX Minnesota Library Access Center

P35 1993 v.2

Consultant's Report

ACKNOWLEDGMENT:

Funding for this project was approved by the Minnesota Legislature M. L. 91, Chapter 254, Article 1, Section 14, Subd. 3(1), as recommended by the Legislative Commission on Minnesota Resources, from the Future Resources Fund.

COPYRIGHT 1993 STATE OF MINNESOTA DEPARTMENT OF NATURAL RESOURCES FORESTVILLE STATE PARK

GEOLOGY AND ORIGIN OF MYSTERY CAVE

Technical Report

Arthur N. Palmer and Margaret V. Palmer Department of Earth Sciences State University of New York Oneonta, NY 13820-4015

CONTENTS

page

STATE CAP Introduction 2 3 Geologic setting 3 Field and laboratory methods 3 Leveling survey 5 Accuracy of leveling survey 6 Computer analysis of survey data 7 Sampling of bedrock and speleothems 7 Stratigraphic mapping 8 Refraction seismology Vibration study 11 13 Photography Laboratory preparation of samples 13 Thin-section analysis 13 X-ray diffraction 13 Scanning electron microscopy and EDX analysis 14 14 Geochemistry 15 Geologic profile of Mystery Cave Stratigraphic interpretation 16 Bedrock composition 16 19 Interpretation of environments of deposition of bedrock 25 The dolomite question 26 Geologic structure Geomorphic interpretation 29 29 Speleothem dating 31 Cave sediment 32 Past water flow in Mystery Cave 32 Scallop data Sediment grain size as a velocity indicator 33 Sediment thickness and bedrock configuration 35 37 Water chemistry 37 Chemistry of cave-forming water 39 Variation of pH with time and depth in cave pools 42 Laboratory analysis of speleothems Influence of water chemistry on crystal shapes in pool deposits 42 Current hypotheses on calcite and aragonite crytal growth 45 A few observations about speleothems in Mystery Cave 54 Stalactites and stalagmites 54 54 Iron-rich spelcothems

Continued.....

LEGISLATIVE REFERENCE LIBRARY

- 56 Levels of static ponding
- 57 Vibration measurements
- 59 Conclusions
- 60 References

126

- 64 Appendix 1: Bench marks in Mystery Cave
- 80 Appendix 2: Leveling data
- 116 Appendix 3: Seismic refraction data
- 124 Appendix 4: Location of samples
 - Appendix 5: Description of bedrock samples

129 Appendix 6: Grain composition of bedrock samples

131 Appendix 7: Clay content of bedrock samples

Appendix 9: Speleothem ages and locations; locations of sediment samples of Milske (1982)

INTRODUCTION

This is the technical portion of the final report for the Legislative Commission on Minnesota Resources (LCMR) project entitled Mystery Cave Geology Resources Evaluation, part of the Mystery Cave Resource Evaluation. This project concerns the geology, mineralogy, and origin of Mystery Cave. A summary of these topics in non-technical terms is given in a separate Interpretive Report, and recommendations for further study and management suggestions are given in a separate Management Report. This Technical Report contains a detailed discussion of the results of this study, along with information on quantitative methods, techniques and equipment, analysis of error and of scientific findings, and tables of data. It is intended to supplement the Interpretive Report, which covers many of the discussions in non-technical terms. Future publications (journal articles, etc.) will be based on both the Technical and Interpretive reports.

Two sets of units are used in this report: American and metric. Large distances are in American units because they are most familiar to the reader, and also because the USGS topographic maps of the area are in feet. Metric units are used for small features, for which there are no convenient American units.

Mystery Cave is the largest cave in Minnesota. The two entrances of the cave, as well as land around them, are administered by the state Department of Natural Resources at Forestville State Park, and interpretive tours are run for the public in both sections by DNR staff. The purpose of this report is to enhance the interpretive and management programs of the Park by providing a comprehensive reference to the geology and origin of the cave.

Acknowledgments: Funding for this project was approved by the Minnesota Legislature M. L. 91, Chapter 254, Article 1, Section 14, Subd. 3(1), as recommended by the Legislative Commission on Minnesota Resources, from the Future Resources Fund. Several people helped considerably in the field work for this project. Warren Netherton, Cave Specialist at Mystery Cave, provided inspiration, enthusiasm, and continual support throughout the project. He and his family did a great deal to make our visits memorable. Calvin Alexander and Roy Jameson of the Dept. of Geology and Geophysics at the University of Minnesota generously contributed their ideas and information about the cave. The Mystery Cave staff gave us much encouragement and guided us in searching out the questions that most needed answering. Our sincere thanks to them all.

GEOLOGIC SETTING

Mystery Cave is located in the Central Lowlands geomorphic province, in gently dissected plateaus with a local relief of only 150-200 feet. It has been developed in carbonate rocks of the Stewartville, Dubuque, and Maquoketa Formations of Ordovician age, which have been dissected by Quaternary stream erosion. The cave occupies an entrenched meander in the South Branch of the Root River. Nearly all the water in the river passes underground through the cave and other solution conduits. The region underwent Quaternary glaciation, although the most recent glacial advances fell short of this area. The latest glacial advance into southern Minnesota was the Des Moines ice lobe, whose eastern boundary fell about 40 miles to the west of Mystery Cave. Glacial effects have been significant in the cave area, however. Thick loess (wind-deposited material derived from unvegetated glacial drift) blankets the area to depths up to 25 feet. The cave contains many sediments that appear to have be glacial material carried underground by the South Branch.

The sedimentary rocks at Mystery Cave locally dip toward the west-northwest at about 0.5-0.6 degrees, Most of the underground water flow is against the dip, toward the east and northeast, with a great deal of discordance made possible by prominent joints and faults. The main outlet for water is Seven Springs, located east of the cave at the valley of the South Branch. About 13 miles of passages have been mapped in the cave, nearly all of which have been guided by fractures oriented mainly E-W and NE-SW. NW-SE orientations are also common in the northeastern part of the cave, and a few passages follow rare N-S joints.

FIELD AND LABORATORY METHODS

Interpretation of the cave required detailed geologic mapping, sampling of bedrock and cave deposits, and a variety of field and laboratory techniques. The major techniques are described in detail here, with the data listed in the appendices. Interpretations of the data are given later in this report. Brief summaries are given in the Interpretive Report.

Leveling Survey

For general orientation and preliminary observations, we used the existing map of the cave made by the Minnesota Speleological Survey (a plan view showing survey lines only). To obtain detailed geologic information, we leveled all the major passages in the cave (and some minor ones) with a tripod-mounted Nikon AZ-1 automatic surveyor's level and segmented metric rods. This survey provided very precise vertical measurements, which are essential for a valid geologic interpretation. To obtain horizontal coordinates, bearings were measured with a hand-held SUUNTO compass, and distances were calculated from stadia readings made with the level. The horizontal accuracy was no better than that of the original survey, as slight errors in location are not significant to the interpretation. The vertical accuracy with this method probably exceeds that of any other cave survey (see the following section on survey accuracy). Where it was not possible to use the tripod-mounted level, a hand level and rods were used, along with a fibreglass tape and SUUNTO compass. In the main part of Mystery III, where numerous junctions made precise locations possible from the original map, we obtained the horizontal coordinates directly from the map.

Figure 1: Map of passages included in leveling survey, showing location of bench marks.

Survey notes taken in the cave included sketches of continuous profiles, with pertinent cross sections and descriptive information. At each leveling station we measured upward or downward to the ceiling, floor, bedding planes, geologic contacts, sediment levels, water levels (past and present), and other noteworthy features. Where appropriate for future use, semi-permanent bench marks were established. Most of these were natural features that are unlikely to move, such as the tips of stalagmites. Where natural features were not available, an inconspicuous "+" was chiseled into the bedrock or on breakdown slabs, as requested by DNR. The 112 bench marks are listed in Appendix 1, along with a few other pertinent elevations.

The leveling survey extended through all the public trails in Mystery I and II, plus the Doorto-Door Route and the major passages of Mystery II and III. We also extended the survey to include Old Mystery Cave, other nearby cave entrances, various wells, Grabau Quarry, Seven Springs, and a roadcut along Route 5 that contains the same rocks as those in Mystery Cave. The leveling survey included 851 stations in the cave (not counting bench marks), with a total of 1405 measurements to geologic features. Including surface surveys, the total was about 1200 stations. Figure 1 shows the cave passages that were included in this survey, as well as the location of bench marks. The survey data are summarized in Appendix 2, which omits some of the surface surveys, for which only a summary of the end points is needed.

Accuracy of Leveling Survey

To provide maximum accuracy, the calibration of the tripod-mounted level was frequently checked with a closed loop between two immobile rods on the surface. The instrument was adjusted to eliminate nearly all deviation from the true horizontal (typically to within about 0.02 millimeter/ meter), and any residual error was corrected for by multiplying the residual error by the shot length. The surveys consisted of alternate backsights and foresights with the instrument, which tended to cancel any calibration errors; but even so, the length-adjusted corrections were necessary, since the calibration error would cancel entirely only if the sum of the backsight lengths equaled the sum of the foresight lengths, which was not the case in this survey.

The hand level was also frequently calibrated on the surface, and its deviation from horizontal was adjusted to be as close to zero as possible. Although no length-adjusted correction was added, the alternation between foresights and backsights tended to eliminate most of the residual error.

The greatest potential for error is in mis-reading the instrument or forgetting to write down datum changes in the hand-level survey. Fortunately there was an internal check: since we were tying to the various strata in the cave walls, any significant deviations in bed elevations were clearly apparent. Two errors were detected in this way, one in Mystery I near the beginning of our survey (where we mis-read the rod by a whole meter) and one on the Door-to-Door Route, where a one-foot datum change was not recorded. These errors caused blatant discrepancies in the elevations of the beds, and so they were easily detected.

The SUUNTO compass was calibrated to true north by sighting between widely spaced points on the surface and comparing the reading with the actual direction as shown on the 1989 DNR topographic survey of the area. This discrepancy was subtracted from each compass reading. It represents both magnetic declination and compass calibration error.

The tripod-mounted level survey included two closed loops: those between Fifth Avenue and

Angel Loop, and between Fifth Avenue and Fourth Avenue. Closure error was 1.9 mm in the first loop and 0.5 mm in the second loop. There is not enough information to suggest a typical error per unit distance, because the longer loop produced the smaller error. The vertical error is negligible. The horizontal error was about 0.1 percent, which is well within normal cave-surveying tolerances and is quite sufficient for our purposes. Accuracy in the vertical data is critical to the interpretation of the geologic structure and cave origin, whereas the horizontal coordinates do not need such accuracy.

The ultimate test of accuracy was the entrance-to-entrance vertical discrepancy between our leveling survey through the cave and the 1989 DNR survey on the surface. Between the DNR bench marks BM10 by the ticket office at Mystery I and BM15 on a power pole near the Mystery II entrance, the vertical discrepancy between the two surveys was only 0.15 foot (4.6 cm). This close agreement was a surprise even to us, since about half of the underground distance was surveyed with a hand level.

Our calculated altitude for Seven Springs is about 6 feet higher than the DNR topographic survey seems to indicate. We need to repeat our survey, as it is likely that there was a mis-reading of the rod on one of the long-distance shots.

As a further check on the accuracy of the cave survey, we re-leveled many of the main passages in Mystery I and II while placing bench marks. This allowed us to note any discrepancies with the original survey. Replicated values are shown below:

Original elevation (1991)	Resurveyed elevation (1992	2)
1230.37	****	(used as base station)
1218.54	1218,54	
1220.87	1220.86	
1219.15	1219.15	
1212.57	1212.51	(awkward position on ledge)
1217.67	1217.67	
1217.83	1217.82	
1214.32	1214.32	
1251.49	1251.48	
1273.60	1273.60	
1222.96	1222.97	
1228.92	1228.92	
	Original elevation (1991) 1230.37 1218.54 1220.87 1219.15 1212.57 1217.67 1217.67 1217.83 1214.32 1251.49 1273.60 1222.96 1228.92	Original elevation (1991)Resurveyed elevation (1992)1230.37 elevation (1992)1218.541218.541220.871220.861219.151219.151212.571212.511217.671217.671217.831217.821214.321214.321251.491251.481222.961222.971228.921228.92

The original figures are considered valid and are the ones shown in the listing of survey coordinates in the appendices.

Computer Analysis of Survey Data

Using a home-made computer program, the leveling surveys were converted to X-Y-Z coordinates (i.e., East-North-Vertical coordinates). Survey lines were plotted in plan views and in both extended and projected profile on a Hewlett Packard 7470A plotter, and details were added from the survey notes. The program also allowed plotting the elevations on specified beds and determining the

mean dip and strike of the beds by extending a regression plane through the data. Residuals between the regression plane and the actual survey data could also be plotted. Structural contour maps were also made with the program SURFER (Golden Software, Inc., Golden, CO).

Sampling of Bedrock and Speleothems

Loose chips of bedrock and broken speleothems were obtained in a non-destructive way, leaving no observable damage. Collecting in a cave should be done in the most discrete way possible, and only for projects that will provide a clear benefit to the interpretation of the cave. In some places it was appropriate to break a small chip from a larger already-broken fragment within the cave; however, virtually no visible scars were left in the cave, even on breakdown blocks. Some bedrock samples were obtained by prying small loose blocks from the wall where fresh breakdown had already occurred. No sampling was done of unique or attractive features, or of features which we are not qualified to study (e.g., bacterial filaments).

The entire stratigraphic sequence within cave was sampled bed by bed -- a total of 76 beds. In addition, 57 speleothem chips (5 for radiometric dating) and 4 sediment samples were obtained; the latter are relatively few, as the sediments had already been studied extensively by Milske (1982), and by Milske, Alexander, and Lively (1983).

A few water samples were taken for chemical analysis to correlate with our mineralogical observations. Water chemistry was the main focus of the LCMR hydrology project, and so our geochemical sampling and measurements were done simply to clarify a few mineralogical questions.

Sampling sites for rocks, minerals, and sediments for this study are shown in Appendix 4. The sediment sampling sites of Milske (1982), the Speleothem samples used for U/Th dating by Lively (Milske, Alexander, and Lively, 1983) and for this report are shown in Appendix 9. One complication is that many of our speleothem samples were obtained from dump piles placed at the surface during excavation of fill from Mystery I during trail improvement in 1990-1992. This material consisted mainly of broken fragments that were used during early (pre-DNR) commercialization to fill the large depression at the base of Frozen Falls. However, it is clear that nearly all of that material originated from the floor of the route to the Bomb Shelter, which was excavated during early commercialization to allow easier access to that part of the cave. Figure 30 in Appendix 4 shows these samples in approximately their original location between Turquoise Lake and the Bomb Shelter.

Stratigraphic Mapping

A major purpose of the leveling survey and the bedrock sampling was to determine the stratigraphic section at Mystery Cave. Each bed in the exposed sequence was measured during the survey, and nearly all beds were sampled for analysis. The stratigraphic section (or column) is shown in Figure 2. The location of our bedrock samples in the column is also shown. A similar column containing formation descriptions is included in the Interpretive Report. The rock formations exposed in the cave (Stewartville, Dubuque, and Maquoketa Formations) are shown on the column with the most commonly accepted boundaries. Individual members within the Dubuque (Frankville, Luana, and Littleport) are difficult to distinguish in this area on the basis of field observation alone. The Luana contrasts with the other two members by having a much lower dolomite content (see details in the discussion of stratigraphy elsewhere in this report and in the Interpretive Report).

Individual beds are identified with code names. SX1 through SX3 are granular, crystalline beds near top of Stewartville. DT1 through DT4 are transitional beds at base of the Dubuque, with little or no shale between them. BP1 through BP3 are major bedding planes near the base of the Dubuque. DL1 through DL29 are limestone beds in the Dubuque sandwiched between thin shale beds. DS1 through DS30 are the thin shale beds that separate the limestones in the Dubuque. Individual beds and contacts between beds are identified on the geologic profile by these code names. Contacts are indicated as in the following example: DS11/DS10 = contact between shale bed DS11 and the underlying limestone bed, DL10.

The code names for the thin limestone and shale beds may seem awkward at first, but the advantage is that in the field it is possible to count quickly upward or downward from a known bed, using only the projecting limestones or the recessive shales, without having to keep track of every bed. It is appropriate to interpret each shale/limestone sequence as beginning with an influx of mud into the shallow sea, followed by a quiet period in which limestone is deposited. The alternation between shale and limestone therefore begins with DS1 (the first shale) followed by the corresponding limestone (DL1), then by the next sequence (DS2 and DL2), and so on.

Note that the terms "limestone" and "shale" are used rather liberally in this description. As explained in the sections on interpretation of the bedrock, most of the limestones are highly dolomitic, and most of the shales are a combination of limestone and shale and so are technically limy shales or shaly limestones.

Refraction Seismology

A Bison single-channel signal-enhancement refraction seismometer was used to determine depths to bedrock in the valley of the South Branch of Root River near the Mystery I entrance, as well as a few other locations (see data and interpretations in Appendix 3). To use the instrument, shock waves are generated at the surface in one of several possible ways (we used a sledge hammer on a 1"thick 8" X 8" aluminum plate). These are detected by a seismometer (geophone) implanted in the soil at varying distances from the shock source. The travel time to the geophone for the first wave arrival is recorded on the cathode-ray tube of the seismograph. By graphing the travel time vs. horizontal distance between the shock source and the geophone, wave velocities through the various underlying materials can be determined (see Figure 3). Best-fitting straight lines are drawn through the data, and their slopes are equal to the inverse of the wave velocity in the various layers beneath the traverse site. Seismic waves travel directly from the hammer to the geophone through the uppermost layer (soil or topsoil). This provides the first straight-line segment on the graph. Wave energy that penetrates deeper into the ground refracts through the underlying layers back to the surface, providing the subsequent line segments on the graph. Layers can generally be detected to a depth no greater than about 1/3 the length of the seismic traverse. With a hammer, the maximum length is about 200 feet (representing a depth of about 60 ft). To detect all layers within this range, each successive layer must have a seismic velocity greater than that of the layer above. The most common sequence is: (a) dry soil, (b) slightly saturated soil, (c) saturated soil (perhaps not present), and (d) bedrock (several layers may be detectable). Each material is slightly more rigid and less compressible than the overlying layer, and so the seismic velocity increases downward.

Typical seismic velocities are:

dry soil:	600-2000 ft/sec
saturated soil or sediment:	5000 ft/sec
shale or sandstone:	6000-12,000 ft/sec (depending on compaction or cementation)
limestone:	12,000-17,000 ft/sec
igneous rock:	16,000-22,000 ft/sec
metamorphic rock:	varies a great deal, depending on type of rock
weathered bedrock:	generally about 50-80% of the values for unweathered rock

The depth to the second layer can be determined by the following equation:

$$Depth = \frac{Xc}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$$

where X_c = the horizontal position on the graph where the two lines of data intersect, V_1 = velocity of upper layer, and V_2 = velocity of lower layer.

Where more than two layers are present, the above equation is valid only if the top layer is relatively thin. Otherwise a more complicated approach is needed. In nearly all the seismic profiles for this report, only two distinct layers were observed: dry unconsolidated river sediment (or loess) overlying limestone bedrock. The contrast in seismic velocities between these two materials is extreme, and so there was little doubt as to the depth to bedrock, except where the bedrock surface appeared to be disrupted by collapse material or had a highly irregular contact with the overlying unconsolidated material. Irregular contacts (if not too irregular) can be detected as scatter in the data beyond the first line segment. Delays in arrival times represent hollows and early arrivals represent high areas.

Reverse profiles (reverse "shots") are used to detect lateral variations in geology. For example, dipping or sloping contacts can be detected by noting discrepancies in the wave velocities between forward and reverse shots. The contact dips in the direction of the apparent lower velocity. The true velocity is roughly the average of the two apparent velocities, and the dip angle is found by:

$$Dip = 0.5 \left[\arcsin \frac{V_1}{V_{2a}} - \arcsin \frac{V_1}{V_{2b}} \right]$$

where V_{2a} and V_{2b} are the apparent velocities of the lower layer measured in the down-dip and up-dip directions respectively.

The example in Figure 3 shows the results for profile #3, which was in the picnic area across from Mystery I, perpendicular to the South Branch, with the forward shot oriented toward the west. Arrival times for the forward shot are shown as triangles, and for the reverse shot as pluses. Note the prominent break in slope in each of the two sets of data. The initial steep portion represents the direct waves that travel only through the soil or sediment. The more gently sloping portion represents the waves that have refracted through the next layer down (in this case, limestone). Straight lines are

drawn through the data. Their point of intersection is X_c , the critical distance, where both the direct and refracted waves arrive simultaneously. For the forward shot, $X_c = 50.5$ ft. For the reverse shot, $X_c = 120 - 70.5 = 49.5$ ft. The slope of the initial line is 0.0009 sec/ft, and the seismic velocity of the upper layer is the inverse of this, or 1110 ft/sec. Using the same technique, the reverse shot gives an upper-layer velocity of 1105 ft/sec. The fact that they are almost exactly the same is not surprising, since they represent the same layer. This is a typical seismic velocity for dry soil or sediment.

The slope of the second line in the forward shot is 0.00009 sec/ft, which gives a bedrock velocity of 11,110 ft/sec. (The numerical similarity to V_1 is coincidental.) The reverse shot gives a slightly lower velocity (8695 ft/sec) for the same layer, apparently because of a slight slope on the sediment/bedrock interface. The average of the two values (9900 ft/sec) is a little low for limestone, but this is undoubtedly a weathered surface that should not have as high a velocity as unweathered limestone. The dip of the interface is only about a degree toward the east.

The depth to bedrock is found in the following way:

Forward shot:
$$Depth = \frac{50.5}{2} \sqrt{\frac{11110-1110}{11110+1110}} = 22.8 \, ft$$

The corresponding depth from the reverse shot is 21.8 ft. The calculated depth actually represents the depth at about 0.5 X_c , so the shallower depth for the reverse shot agrees with the fact that the bedrock surface slopes very gently toward the east.

Point A deviates significantly from the straight line. This could be caused simply be scatter, but the regularity of all the other data argues that it is a valid point. This was apparently caused by a slight depression in the bedrock surface, which caused the seismic waves to be delayed by having to travel through a greater distance of low-velocity sediment. The delay is only 0.002 sec, which, with an upper-layer velocity of 1110 ft/sec, represents a depression of only two feet or so (taking into account the fact that the wave is traveling at an angle to the surface). The irregularities on the bedrock surface are not large enough to warrant special attention.

Vibration Study

The same Bison seismometer used in the surface seismic study was also used in the cave to measure the effect of surface disturbances compared to the background level of vibration. This study was not very conclusive because of limited equipment, but in general it showed that normal traffic over the cave produces almost undetectable vibration in comparison with background vibration from drips and other natural sources.

ĺ

{

Sample Selsmic Refraction Plot Profile #3

Figure 3: Example of travel-time graph for seismic refraction profiles.

Photography

Black-and-white photographs were made of significant features in the cave, as well as closeup views of samples and photomicrographs of thin section. Kodak T-Max 100 and Tech Pan film were used for all photos. Cave scenes were photographed with a rangefinder Leica M2, and outdoor scenes, close-ups, and microscopic samples were photographed with a single-lens-reflex Leica R4. Only a few of the photos are included in this preliminary version of the LCMR report. The complete collection will appear in the June 1994 version.

Laboratory Preparation of Samples

Rock and mineral samples were first sketched, photographed (if appropriate), and described under binocular microscope at magnifications up to 40X. Fossils, basic structure, and most minerals could be identified by this method. Where appropriate (for about 80% of the samples) the samples were cut by diamond saw into thin slabs and mounted on glass slides with epoxy resin (Buehler epoxide), then sent to a professional lab for thin-section preparation. Delicate samples were first impregnated and embedded in epoxy to prevent disintegration. Mounted slabs are ground by the thinsection laboratory to about 30 microns (0.03 mm) thickness, at which where they are transparent and can be viewed by transmitted light through a microscope.

Thin-Section Analysis

Thin sections were interpreted and photographed with the aid of a petrographic microscope (Leitz model 11, with magnification up to 630X), which provides the option of using polarized or cross-polarized light, which enhances certain images to help in the identification of minerals and their associations. Under the polarizing microscope nearly all minerals could be identified and their interrelationships were clarified. The chemical history of the sample could be fairly clearly interpreted.

A simple but effective method for identifying certain minerals in rock slabs or thin sections is to color them with mineral-specific stains. This is not always necessary, but it provides a quick and easy way of distinguishing the relative abundance and distribution of mineral types within a sample. Alizarine red staining for calcite was used on all thin sections of bedrock to aid in making preliminary distinctions between minerals.

Seventy-three thin sections of rock samples from the cave were made in order to interpret the environment in which the various beds formed, as well as their effect on the cave. Point counts were made to determine the major constituents of each sample. These are done with a mechanical slide holder that moves the sample a given distance in either of two perpendicular directions, so that the entire surface (or a selected portion of it) is divided into a rectangular grid. At each point on the grid, the mineral is noted and recorded. Summing the results gives the percentage of each mineral in the sample.

X-Ray Diffraction

Minerals that are too small to recognize under the polarizing microscope, or whose identity is ambiguous, can be identified by powdering a small sample and determining its X-ray diffraction pattern. A thin layer of powder is placed on a microscope slide and is slowly rotated within an X-ray diffractometer while it is exposed to a beam of X-rays. The rays are scattered by diffraction at given angles (2-theta), and each mineral has a distinctive set of peaks at which the outgoing radiation is most concentrated. Mineral identification is usually quite unambiguous, although certain mineral groups, such as clay, can prove difficult to distinguish. The relative abundance of elements in certain minerals, such as the Mg/Ca ratio in calcite or dolomite, can also be determined. For this study most of the samples were analyzed with a Philips model XRG-3100 X-ray diffractometer.

Scanning Electron Microscopy and Energy-Dispersive X-Ray Analysis

The scanning electron microscope (SEM) is used to examine the surface characteristics of a sample. It produces exquisite photomicrographs. The problem is that only the surface can be viewed, in contrast to the petrographic scope, which allows internal structures to be viewed. Combined with the SEM is an EDX (energy-dispersive X-ray) unit that identifies individual elements within selected parts of the sample. This information complements that from the X-ray diffraction unit. It does not identify the minerals but helps to narrow the range of possibilities and gives information about their impurities. We used an ISI DS-130 scope with Tracor-Northern EDX unit, courtesy of Rick Olson of the Electron Microscopy Laboratory at University of Illinois. So far only two samples have been analyzed in this way: MY 98, a shale in the Dubuque (DS21), to verify the chemical content determined by X-ray analysis, and MY219, a black flowstone chip from the Tar pits, to identify the source of the black stain.

Geochemistry

Water chemistry was not one of the primary goals of this project, since detailed information on the subject is available from the group undertaking the LCMR Hydrology project. However, the major geochemical concepts are described here, and a few measurements of water chemistry were made for this study, because they concern the origin of the cave and its speleothems.

The pH and temperature were measured in selected pools, streams, and drips, as well as in the South Branch of Root River during a moderate flood (April 19, 1993). Calcium and magnesium were measured in the lab by EDTA titration (repeatability to 1-2%). From these four measured variables it is possible to calculate the saturation index (SI) for calcite, aragonite, and dolomite, the equilibrium P_{CO2} of the water, and the molar Mg/Ca ratio. Without a full analysis of the dissolved components the SI and P_{CO2} are not exactly accurate, but the major karst-related attributes of the water and comparisons between water samples are apparent. Data from the thesis by Shiela Grow (1986) were also used to calculate the SI of calcite and dolomite, to show how saturation levels in the river water could affect rates of cave enlargement.

The home-grown Pascal program "SI" was used to determine saturation index with respect to calcite, aragonite, and dolomite, as well as molar Mg/Ca ratio and equilibrium P_{CO2} . Our figures differ slightly from those of the hydrology team because we use slightly different equilibrium constants, and because the SI calculations are more accurate (as shown by significant discrepancies in mass balance with the PC WATEQ program normally used). However, in practice the difference is negligible.

The following sections describe in detail the results and conclusions from the field mapping and laboratory analysis. Only the quantitative and technical aspects are discussed here. A more general discussion is given in the Interpretive Report.

GEOLOGIC PROFILE OF MYSTERY CAVE

The profile of the cave that accompanies these reports consists of 20 11" X 17" sheets. This is an extended profile, which stretches out all the bends and allows the surveyed passages to be viewed from the side without the confusion of having segments arranged at various angles to the surface of the page. Each profile sheet contains a plan-view index map of the cave to show where that particular segment of the profile is located. The profile sheets are unbound because of their large format. This facilitates comparison between sheets and also makes it possible to piece them together if desired. Ceilings, floors, major cave features, survey stations, and permanent bench marks are shown, as well as geologic contacts that appear in the cave walls. Only a few selected contacts are shown on the profiles to avoid clutter, but all beds, contacts and bedding planes are shown on the cross sections that accompany the profile. Survey stations are shown as round dots. To avoid clutter, fewer than half are labeled, but the sequence of the unlabeled stations is clear. Survey data and geologic measurements at each station are shown in Appendix 2, along with an explanation of the notation.

The vertical scale of the profile is exaggerated 5 times, to emphasize differences in elevation between various parts of the cave. The cross sections have a 1:1 vertical to horizontal scale -- i.e., they look just the way they do in the cave. The vertical exaggeration of the profile prevents it from looking like a strand of spaghetti, but it does cause some strange effects on local features -- breakdown that looks like the Tower of Pisa, needle-like stalactites, side passages that look far thinner than they really are, and descending fissures that look terrifyingly deep and narrow (an impression that seems all too real to the explorer). For this reason some of the features (particularly breakdown) are drawn with a certain amount of artistic license, reducing their vertical exaggeration to provide a better feel for how they look in the cave.

The vertical exaggeration of the profile also exaggerates the dip of the beds. Do not measure the dip directly from the profile! To find the actual dip between two points, measure the horizontal distance between the points, as well as the elevation difference on a given contact or bedding plane between the same two points. Divide the elevation difference by the horizontal distance and take the arctangent (inv tangent or tan⁻¹ on a calculator) to obtain the true dip. For example, between stations R24 and D37 on Sheet 1 (Mystery I), the horizontal distance is 411 ft and the elevation change on contact DS13/DL12 is 2.3 ft. The apparent angle of dip exposed in this section of the cave is therefore $\arctan (2.3/411) = 0.32$ degrees. Warning: the dip shown on the profile is only an *apparent* dip. That is, where a passage cuts across the beds at some angle other than the true dip direction, the beds exposed in the walls will exhibit a dip, but it will not be the full amount of the dip. For example, if the true dip is to the northwest and a passage is oriented east-west, it cuts across the structure at an angle of 45 degrees to the true dip. The apparent dip (exposed in the walls of the passage) will be only half as great as the actual dip. If the passage is oriented northeast-southwest, as is much of the Door-to-Door Route, the apparent dip will approach zero. In passages that zig-zag in many directions, such as the passage near the Bomb Shelter and toward Enigma Pit, the apparent dip will vary considerably. The apparently radical changes in dip on the section between Fifth Avenue and Enigma Pit (Sheet 15) are caused more by changes in the passage direction than by changes in the dip itself.

STRATIGRAPHIC INTERPRETATION

The rock strata at Mystery Cave and their origin are described in detail in the Interpretive Report. The following section includes the results of the rock analysis, interpretations about the environments in which the rocks were deposited, and their effect on the cave. Refer to Figure 2 and Appendices 4-7 for quantitative details.

Bedrock Composition

The descriptions and map in Appendix 4 show where the bedrock samples were obtained in the field. Their descriptions are given in Appendix 5. Insoluble residue percentages were determined by dissolving part of each sample in dilute hydrochloric acid, weighing the residue, and calculating the weight ratio of the residue to the original sample. This information is also shown in Appendix 5. The grain composition of each bedrock sample was then determined by making point counts of the thin section of each sample (Figure 4). The relative percentages of calcite spar, calcite mud (micrite), dolomite, fossils (mainly calcite), and non-carbonate material (mainly silt and clay) are listed in Appendix 6. Alizarine red stain was used to differentiate calcite from other minerals. Because it was difficult to differentiate stained grains in clay-size material, the percent insoluble residue is a better approximation of the shale content. In a few samples the insoluble residue does not agree with the percent insoluble material measured in thin sections, as shown in Appendix 5, because of local variations in composition within the sample and lower accuracy of identifying insoluble material in thin sections. The insoluble percentage of the Dubuque shale beds varies from 34% in bed DS6 to more than 70% in beds DS14 and DS18 (Figure 5). The Dubuque "shales" are actually limy shales at best, and many of them are simply shaly limestones. This is to be expected, because limestone deposition did not stop when the detrital sediment was being carried into the Ordovician sea. The insoluble content of the limestone beds is much lower. In the Stewartville it ranges from nearly zero up to about 10%. In the Dubuque limestones it ranges from nearly zero up to about 30%. The Maguoketa had a consistently significant insoluble percentage from about 8 to more than 50%. There is one discrepancy in the bed names: the bed we labeled in the field as DL27 (implying that it is a limestone), because of its resistance to weathering compared to the surrounding shales, turned out to have a very high insoluble percentage and is probably better identified as a limy siltstone.

X-ray analysis of insoluble material from the shale beds in the Dubuque shows that it consists mainly of illite (a clay mineral), muscovite (mica), and quartz. The results are shown in Appendix 7. EDX spectra of sample MY98 (bed DS21) showed the presence of Mg, Al, Si, K, Ba and Fe. This corroborated the X-ray analysis. The uniformity of most of the results shows that the erosional source area was rather constant. Montmorillonite, a clay mineral that might indicate the presence of former volcanic ash beds or bentonite, was not found, although some samples have yet to be analyzed. It is possible that accessory minerals will have to be used to identify the bentonites.

Three beds show a significant difference from the others: DS16, DS20, and DS25 (samples MY85, MY90, and MY106). They contain chlorite and kaolinite (also clay minerals) in addition to the other three. It is interesting to note that both DS16 and DS20 have a distinctly gummy texture, weathering almost to the consistency of soft chewing gum. Both are exposed in many places (see geologic profile). Our samples came, respectively, from near the ceiling of the western extension of Fifth Avenue and from the connection in Fourth Avenue between Fat Man's Misery and the Smoking

Figure 5: Insoluble residue in shale samples from the Dubuque Formation.

Chamber. Bed DS25 was not sampled only at the cave entrance, but it probably behaves in a similar manner in the moist cave environment.

Interpretation of Environments of Deposition of Bedrock

Figure 6 and Appendix 6 show that dolomite forms a high percentage of the Stewartville Formation and the Frankville Member of the Dubuque Formation. Dolomite crystal sizes average 200 microns (0.2 mm). There is a sharp drop in dolomite percentage at the Luana/Frankville contact at the first distinct shale (DS1). There continues to be a trace amount of dolomite in the Luana and a small amount of rhombic porosity that represents dolomite that has been dissolved from the sample by weathering. Dolomite becomes significant again in the Littleport Member. Dolomite content adds to the meager rationale for subdividing the Dubuque into members. The Maquoketa is even more dolomitic than the Stewartville, with some beds that have been almost completely dolomitized.

Little of the dolomite in the section is detrital (i.e., deposited as sediment grains). Most of it has replaced preexisting limestone carbonate beds. However, some dolomite rhombs at the tops of beds in the Littleport Member appear to be detrital. For example, bed DL26 (as shown by sample MY109) overlies a wave-scoured surface, from which material was ripped off by storm activity and which acquired a wavy surface. Non-dolomitic angular clasts of siliceous clay float in a matrix of dolomite rhombs above the wavy bedding. This juxtaposition suggests that the dolomite was a detrital residue from the eroded layer. A photomicrograph of a typical storm deposit is shown in Figure 7.

The most obvious depositional trend, of course, is the appearance of shale interbeds at the Luana/Frankville contact. Phosphate grains and phosphatized fossils, especially conodonts, appear for the first time and coincide with the influx of shale. Shale and phosphate continue to be common upward through the lower Maquoketa. Fossils are located rather uniformly throughout the column, suggesting that any changes in the geochemical environment controlling the precipitation of dolomite were subtle enough that the fauna were not disrupted. Carbonate mud is also fairly constant, although it gives way to shale in the Maquoketa.

Fossils are one of the chief clues to interpreting the depositional environment. Details are given in the Interpretive Report. The most characteristic feature of the Stewartville is the numerous burrows of the worm *Paleosynapta flaccida*. They are tubular structures about a centimeter in diameter and have been dolomitized. The dolomite is very susceptible to weathering and often leaves holes in the surrounding limestone. However, in many places the burrows protrude into the cave instead of weathering inward. The difference is shown in photographs in the Interpretive Report. Projecting burrows invariably lie below those that weather to holes. This difference is not controlled by stratigraphy, because the transition point migrates up or down following the contours of what seem to have been banks of sediment. Burrows that project outward appear to have been covered at one time by sediment that has since been removed by erosion. The sediment apparently protected the dolomite from weathering. Remnants of sediment can be traced up to the level at which the burrows stop projecting. The cave walls are usually more recessed where the burrows protrude. Burrows stick out on the surface of undercut ledges, implying that water may have been more aggressive to limestone than to dolomite below the sediment cover, where erosional effects would be absent.

count analysis of thin sections.

The burrows tell a great deal about the depositional environment in the Stewartville. Biological disruption of sediment (bioturbation) is typical of quiet water in which nutrients are available. The Stewartville samples contain very little noncarbonate sediment. This corroborates the idea that the Transcontinental Arch to the west of Minnesota lay under water during Stewartville time (see Interpretive Report). The bedrock was initially calcite mud with scattered fossil fragments floating in it -- a texture called wackestone (pronounced "wackystone"!). The burrows are secondary and have disturbed the original texture of the sediment. Bedding-plane partings are rare in the Stewartville and those that do occur they are discontinuous, probably because of the burrowing activity.

Although the dolomite is concentrated in the burrows, its contact with the surrounding calcite mud is gradational. The dolomite clearly cuts across mud and fossil fragments alike (Figure 8). It not only occurs in the burrows but also is found associated with small clusters of other fossils. It is common for dolomite rhombs (parallelogram-shaped crystals) to cut across both fossils and surrounding limestone matrix, with the edge of the crystal faces perfectly intact where they project into the matrix. This shows that the dolomite was not transported into the area (which would have abraded the grains) but instead formed soon after the burrows, after the sediment was completely deposited. All of the dolomite is rich in iron oxide derived from former pyrite. Most of the iron oxide is amorphous (has no crystal structure), but in a few places it is pseudomorphic after pyrite cubes (i.e., it takes on the shape of former pyrite crystals). Weathering caused the burrows to become yellow-brown as the pyrite was oxidized to the iron oxide minerals limonite and hematite. In weathered samples, many of the dolomite crystals are surrounded by porous zones that allow the crystals to fall out easily, which makes the burrows less resistant than the surrounding rock (Figure 9). Dolomite in the burrows is cloudy with dark filamentous inclusions which appear to be organic. The burrows apparently represented a stagnant reducing environment. It is highly probably that sulfate in the seawater within them was reduced in the presence of organic material to hydrogen sulfide, which combined with iron to produce pyrite. A byproduct of the reduction process was the precipitation of dolomite:

Organic carbon + $SO_4^{=}$ + Ca^{++} + Mg^{++} =====> $CaMg(CO_3)_2$ + H_2S etc.

sulfate

dolomite hydrogen sulfide

 $H_2S + Fe^{++} === FeS_2$ (by a couple of intermediate steps)

pyrite

In fresh water, in the presence of gypsum, dolomite tends to be replaced by calcite. Dolomite forms in the presence of gypsum only in sea water, which has a very high Mg/Ca ratio.

Many of the fossils in the Stewartville are conspicuously bored, probably by endolithic boring algae, although fungi, sponges, barnacles and bryozoa can produce similar structures (Figure 10). ("Endolithic" means within the rock.) The boring implies that the shells lay in the photic zone penetrated by sunlight. Both the Stewartville and the Dubuque contain a large amount of mud-sized carbonate material and scattered fossils. Fossil fragments in the Stewartville are randomly oriented, implying that storm erosion had little effect on sorting them or aligning them (for example, parallel to wave motion), or that bioturbation destroyed any such effects. Sedimentation was probably very slow, allowing time for boring and bioturbation to take place undisturbed.

Figure 7: Thin section of a lag deposit of shells overlain by carbonate mud that settled out after a storm (MY100a). Enlargement = 5.5X (non-polarized light).

Figure 8: Dolomite rhombs typically cross the bedrock matrix, grains, and fossils, showing that the dolomite post-dates the original sediment (sample MY109). Elargement = 40X (polarized light).

Figure 9: Porous zones (dark areas) outlining corroded dolomite crystals in weathered samples (MY2). Enlargement = 67X (polarized light).

(

Figure 10: Thin section showing organic borings in a fossil fragment, typical of Stewartville Formation (MY38). Enlargement = 50X (polarized light).

Figure 11: Bedrock grains partly replaced by gypsum that has since been replaced by calcite spar (MY 45). Enlargement 50X (polarized light)

Some fossils in the rocks exposed in Mystery Cave have been recrystallized to calcite spar. Many of these fossils were completely dissolved and their molds were filled with spar. This is typical of fossils whose shells were originally composed of aragonite. Because aragonite is usually unstable in fresh groundwater, it easily dissolves. The tendency for former aragonite shells to dissolve in the upper Stewartville was noted by Delgado, (1983), although his observations show that the dissolved shells were filled with sediment instead. Evidence of boring activity in some of these calcified fossils indicates that calcite replacement took place in the marine environment, in which the aragonite would presumably have still been stable, and not at a later date after the rocks had been exposed to fresh groundwater by uplift. Calcite nodules scattered throughout the Stewartville, especially near the top, are another indication that calcite was stable at the time of dolomite precipitation. Calcite vugs are also concentrated along joints and cracks at about eye level in the Angel Loop. Near the top of the Stewartville, calcite spar fills the burrows but is surrounded by a hazy zone of dolomite. The spar does not have a sharp contact with the surrounding rock but partially digests it, leaving bits of unassimilated dolomite and inclusions floating in the spar. Dolomite rhombs are irregular and corroded, with many holes and ragged edges. In sample MY45 (near the top of the Stewartville) partly assimilated fossil fragments "float" in spar. Edges of the fragments are broken into small crystals that have become assimilated by the spar. Iron oxide occurs at the edges. Slightly larger spindle- or lozenge-shaped calcite crystals float nearby within the spar along with tiny remnants of almost completely assimilated fossil grains. In one place the inclusions are dark, very small networks of what appear to be filaments. It is clear that dolomite formed in the low-energy reducing environment and that the spar formed soon afterward.

Textures like these are common in areas of gypsum replacement of limestone or dolomite. Gypsum wedges the bedrock apart as the gypsum crystallizes in cracks and gradually replaces the fragments by assimilation (Figure 11). Bedrock fragments appear to "float" in the gypsum. Breccias (conglomerates with angular fragments) are commonly produced. Such a breccia occurs at the Stewartville/Dubuque contact. We have observed similar features in bedrock replacement zones behind gypsum crusts in many areas, including Lechuguilla Cave, New Mexico. Another indication that gypsum was present is the presence of stylolites, which are irregular interpenetrations of one bed into the underlying one. Stylolites represent zones of compaction, often where a void space has collapsed. Gypsum is very soluble and its former presence is frequently represented by stylolites. Sample MY46 (bed SX3) is lined with spar that has filled cracks formed by gypsum growth. The spar in MY 46 (bed SX3) ends laterally in a wavy disconformity, as described in the Interpretive Report.

Besides the worm burrows in the Stewartville, other organic remains can tell us about the environment. Scavenging organisms such as snails and nautiloids are common, indicating yet again a high level of organic material in the sediment. Fossils are similar to those found in the Dubuque. Sloan (1987) reported that an extinction event reduced the fauna by 90 percent in the lower Stewartville, which he thought was caused by shallowing of the water (see graph of water depths in the Interpretive Report). If our interpretation is correct that sulfate reduction was common in the Stewartville, could an alternate explanation be that salinity rose as the sea became shallower, killing many organisms? According to Sloan and Webers (1987), the few species of snails that dominated the upper Stewartville lived under very harsh conditions. We found fewer intact shells in the Stewartville than in the Dubuque, but the overall percentage of fossil debris does not vary much between formations, and the fossil types were much the same.

Large fossil fragments are easily recognized in thin sections from the Dubuque. The most common include brachiopods, trilobites, ostracods, conodonts, and echinoderms. Brachiopod shells are layered, with thin, subparallel laminations that are inclined at angles to the shell surface like shingles

on a roof. The laminations are usually slightly wavy or crinkled. A trilobite shell consists of a single crystal. Extinction under polarized light (i.e., the sample turns dark) does not occur sharply or all at once, but instead a dark extinction band travels as a wave across the crystal as the microscope stage is rotated. In cross section, trilobite shells have bent ends that look like shepherd's crooks. The two shells of an ostracod are usually nearly spherical and only about a millimeter wide. Conodonts are tiny (1/2 mm) tooth-shaped features usually replaced by phosphate. Echinoderms are made up of monocrystalline plates. The echinoderm is easily broken up, leaving many round-to-square plates having sharp extinction under polarized light. Chitinozoans, of uncertain affinity, became common in the Upper Dubuque and Maquoketa. They are tiny (1/2 mm) opaque, thin walled, black organic bodies shaped like vases but squashed flat in our samples so that the two walls lie against each other.

Phosphate is associated with the shale beds in the upper Dubuque Formation and continues upward into the Maquoketa. Phosphate is also encountered in one of the lowest shales (sample MY58 = bed DS2). At this same horizon, dolomite decreases to a trace amount. Phosphate is often associated with nondepositional intervals or periods of slow sedimentation and can imply high biological production (Scholle, 1978). Experiments suggest that organic matter provides phosphate to pore water and will not form if the substrate is sterile (Southgate, 1986). Burrowing becomes less common upward into the Dubuque, and layers of large fossil fragments separated by calcite mud are common. These fossils are probably remnants from episodic storms, when high-energy waves reworked the bottom sediment. Fine-grained material went into suspension, while the heavier fossils were aligned along the bottom as a lag deposit and were covered with mud again when the fine-grained material settled out. Sparse calcite spar in the upper Dubuque shows evidence of having replaced evaporites. Conditions seem to have returned to those of the upper Stewartville. Dolomite crystallized in a reducing environment near the top of the Dubuque where organic carbon was present.

The Dolomite Question

How does dolomite form? This is a question that has plagued geologists for many years. There is an immense amount of literature devoted to this topic and no real end in sight (Hardie, 1987). There are many hypotheses on the subject, and a good discussion can be found in Blatt, Middleton and Murray (1980). But when applied to the field, usually no single theory seems to fit. Most geologists in the midcontinent favor the model that invokes mixing of freshwater with seawater for the Galena dolomites. It was thought that fresh water from land areas mixed with magnesium-rich saline water to form a mixture that would precipitate dolomite. Even though the idea is supported by the fact that the Galena dolomites formed in shallower water than limestone, there are exceptions where this hypothesis does not hold true (Witzke, 1983).

Friedman (1980) recognized that dolomite is associated with gypsum (Friedman, 1980), and that its reduction might form dolomite (Mullins and others, 1988). Compton (1988), who studied dolomite in the Monterey Formation in California, found so much evidence for the coincidental decay of organic matter, the reduction of sulfate, and the origin of dolomite, that he called this dolomite "organogenic." Evidence that sulfate reduction produced the large bodies of dolomite that formed in the shallow continental seas of the past has been largely overlooked. Although the evidence in the Mystery Cave samples is subtle, we strongly support this origin for the dolomite in the Stewartville.

GEOLOGIC STRUCTURE

The enclosed geologic profile of the cave clearly shows the local northwesterly dip of the rocks in which the cave is developed. The mean dip of any particular geologic contact or bed (i.e., the angle at which it is tilted) can be found by calculating the regression plane through all the measured points on that contact. The results differ according to the contact chosen because the dip is not uniform, and each contact is exposed in somewhat different parts of the cave.

The 87 points measured in the cave on the Dubuque/Stewartville contact have the following regression plane:

elevation above sea level = 0.0071 E - 0.0050 N + 1198.95 ft.

where E = feet east of station D1 and N = feet north of station D1 (use negative values for west and south respectively). The standard error of estimate is 2.08 feet -- that is the mean deviation in elevation between the regression planes and the actual measured points. The regression plane dips 0.50 degree in the direction 304.9 degrees.

A summary of the dip attitude of various contacts is given below:

Contact	Dip angle	Ft./mileDip	direction S	td. error	No. of points
D/S	0.50 deg	46 ft/mi	304.9 deg	g 2.08 ft	87
BP2	0.68	62	307.4	1.55	56
DS1/DT4	0.77	71	312.6	1.91	19
DL9/DS9	0.55	51	302.1	1.27	38
DS10/DL9	0.68	63	308.0	1.46	21
DL10/DS10	0.72	66	308.1	1.24	34
DL14/DS14	0.50	46	307.4	1.55	18

The average dip of the rocks in the cave is therefore about 50-60 feet per mile, with a rather uniform dip direction of about 307 degrees (i.e., 53 degrees west of north). The smaller mean dips are on contacts that are partly exposed in low-dip parts of the cave. For example, D/S is exposed in Fifth Avenue and the route to the Garden of the Gods, where the dip is less than in the other parts of the cave. The standard error is understandably large, because a single regression plane cannot represent very well all the points on a contact that varies in dip. Those contacts with both low standard error and low dip are exposed mainly in those parts of the cave in which the dip is low.

In detail, there are many small structures superimposed on the average dip, some due to erosional/depositional irregularities or differential compaction, and some due to structural deformation. From the standpoint of water flow, there is little difference in effect.

To reveal the variations in dip in the area, the Dubuque/Stewartville contact was contoured using the contouring program SURFER (Golden Software Co., Golden, CO). To provide rather uniform coverage throughout the cave, several other higher stratigraphic contacts were included in the data, with their elevations adjusted downward to the Dubuque/Stewartville contact. In other words, measurements on DL10/DS10 are 15.25 feet above the D/S contact, and so this interval was subtracted from the original values to represent the underlying D/S contact at that location. Stratal

thickness is nearly uniform throughout the cave, so this technique was valid for this purpose. All such adjusted values were then contoured using the minimum curvature routine, which fits the data points with a contoured surface having the smallest possible curvature. The resulting structural contour map is shown in Figure 12. Survey points are shown as asterisks.

Contours in Figure 12 are least accurate in the northwest, northeast, and southeast corners of the map, where there are no measured points. The contouring routine assigned unlikely warped structures to these areas to fulfill the minimum-curvature requirements, and to avoid this a few arbitrary points were added in these areas to make the structure more realistic, although still obviously not correct. Unless actual data points are available for these areas, no amount of statistical manipulation can interpret what is going on there.

Contouring by hand is often better for geologic interpretations, as the computer program has no intuitive feel for the way geologic structures behave in real life. The adjustment of the contours in the corners described above is an example of the intuitive approach. However, the contours produced by the program were left intact in the cave area, where there were abundant data points, to avoid any bias in contouring. This impartial approach was important at Mystery Cave, because regardless which contouring routine was used, a distinct change in dip angle was observed in the vicinity of the junction between Fifth Avenue and the Angel Loop that seems to account for northwest-southeast passage trends in that part of the cave.

The northwest-southeast fissure passages in the cave are all located along or just east of the steepening of dip (compare Figure 12 with the cave maps included in the Appendices). Joints having this NW-SE trend appear throughout the cave, but they are enlarged to cave size by solution only in the northeastern part of the cave. Local stress in the rock must have been greater along the hinge line where the dip changes, widening the joints to the point where the cave could utilize them as easily as the other joint sets. Therefore, this flexure in the beds appears to have had a significant impact on the orientation of fissure passages in the cave.

The structural contour map shows a dip change from west-northwest at Mystery Cave to southwest at Grabau Quarry, which is located north of the South Branch of Root River. The map shows a strike direction of 310 degrees (N 50° W) at the quarry. During the leveling survey to the quarry, we measured the local strike by positioning the tripod-mounted level at a distinct contact and rotating the instrument until its cross-hairs were superimposed on the same contact in the opposite wall of the quarry. This indicated a strike direction of 328 degrees (N 38° W). No attempt was made to account for the slight calibration error in the instrument over that distance (several hundred feet), so this strike estimate is imperfect. However, the local southwesterly dip on the structural contour map was verified.

surrounding areas. * = surveyed points. Refer to Figure 1 for passage relationships.

GEOMORPHIC INTERPRETATION

The main discussion of the origin and developmental history of Mystery Cave is given in the Interpretive Report. The following section contains a summary of quantitative information that supports our conclusions. A summary of this interpretation is that the cave originated as an underground bypass for the South Branch of Root River, and that the passages developed in several stages: (1) an early west-to-east series of passages, including Fourth and Fifth Avenues; (2) passages in Mystery I and the Door-to-Door Route, with a general northeasterly trend; (3) lower levels that formed as the river level cut downward in its channel, allowing deeper cave development. This eveolution did not take place in discrete stages, as they overlap in time, and many of the original paths are still active in the lower levels, as well as periodically at all levels during floods. We view the cave as a dynamic floodwater cave that is intimately tied to the entrenchment history of the South Branch valley, rather than an enlarged remnant of a region-wide system of solutional fissures, although early solutional enlargement previous to the entrenchment of the river probably did contribute to the initial enlargement of some fractures. Entrenchment of the South Branch, and therefore the origin of Mystery Cave, depended on the entrenchment of the Mississippi River into the low-relief pre-glacial landscape. The Root River is tributary to the Mississippi and could not cut downward independently. This entrenchment began in the early or middle Quaternary Period, probably between 500,000 and 1,000,000 years ago, as indicated by the presence of old glacial deposits of presumed "Kansan" age in the valley. (The terms Nebraskan, Kansan, Illinoian, and Wisconsinan have long been used to designate what were thought to be four main glaciations in North America, but recent evidence makes this interpretation and these names a bit obsolete, although they are still used for general reference.) That would make the deepening of the river channel more than about 500,000 years ago.

Speleothem Dating

One of the few methods for obtaining absolute ages for cave features is radiomentric dating of calcite speleothems. Speleothem dates using $^{234}U/^{230}$ Th disequilibrium methods (Milske, Alexander and Lively, 1983), have made it possible to outline the more recent events in the cave's history. Most of the speleothem groups have already been sampled by Lively (of the Minnesota Geological Survey), and so only 5 additional dates were obtained as part of this LCMR project. These dates are summarized in Appendix 9.

A frequency plot of speleothem ages (Figure 13) shows several time intervals when caclite deposition was favored (mainly around 10-5 ka and 100-150 ka) with intervening periods of little or no deposition (ka = age in thousands of years -- a convenient abbreviation used mainly by those involved in geologic age dating). Some dates exceed the range of the method, and are therefore older than 350 ka. In accordance with earlier workers, Milske, Alexander and Lively (1983) interpreted this pattern with the view that speleothems form during interglacial periods, when vegetated soil is abundant and contributes CO₂ to the infiltrating water. During cold periods, when the area is either covered with ice or in the zone of permafrost, both the infiltration rate and the CO₂ production in the soil are low. Some caves were also deactivated by nearly complete filling with glacially derived sediment. Speleothem growth at 0-20 ka and around 100 ka. Beyond that there are no significant peaks or breaks in the dates. The data of Harmon and others (1977) for speleothems from caves in the Canadian Rockies show the first two peaks, but also two older around 200 and 300 ka. Because ice-free and ice-covered conditions seem to have no sharp divisions in the midcontinent, it is impossible to

Figure 13: Distribution of speleothem ages, from Milske, Alexander, and Lively (1983) and from samples collected for this project.

make sharp distinctions between cold and warm periods, and the the speleothem record reflects the haziness of the climatic boundaries.

The lack of clear peaks beyond about 150 ka in Mystery Cave is probably due to the fact that many of the older speleothems have been so recrystallized that their U/Th composition has been disrupted, and no dates could be obtained from them. Another factor of particular significance at Mystery Cave is that flooding tends to destroy speleothems, and so those that are preserved are mainly the younger ones that post-date the deeper levels in the cave.

Cave Sediment

The sediment study by Milske (1982) and the summary by Milske, Alexander, and Lively (1983) shows that the typical sediment distribution in Mystery Cave consists of thick silt overlain by thin layers of sand and gravel. They found that most of the sediment in the cave was derived from pre-Illinoian glacial deposits outside the cave. It was rarely derived from the bedrock. Both the cave sediment and the glacial material contain varying amounts of feldspar, montmorillonite and kaolinite; whereas the shale in the Dubuque does not contain these minerals. They interpreted the silt to have been deposited during the transition from deep phreatic to shallow phreatic conditions (*phreatic* means below the water table, where all openings are filled with water year round), and that the sand and gravel were deposited by swiftly flowing streams late in the history of the cave. Our interpretation, based partly on the seismic data from the South Branch valley, is that silt is derived from the thick loess that covered the land surface late in the glacial history of the area, and that this material was carried in by the river and choked all the lower levels. The rapidly flowing streams that deposited the same water, but flowing swiftly more or less at grade with the river and perched on the older silt.

On the basis of the speleothem dates, however, there appears to have been more than one stage of filling. Sediment in Enigma Pit is capped by old speleothems (up to 180 ka), but those on the Door-to-Door Route are much younger (about 12 ka on the average). This age distribution may be misleading, because the Door-to-Door Route is still subject to flooding, and it is possible that early speleothems have been removed or were unable to form in the first place. These topics are discussed in detail in the Interpretive Report.

The last glacial advance, the Des Moines Lobe, is probably represented by the break in speleothem deposition between 12-20 ka, and outwash from this lobe may have furnished the Door-to-Door sand and gravel, which was then overlain by thin silt and finally calcite dated at 8-12.6 ka. During the waning stages of the Des Moines Lobe, a series of large lakes ponded behind remnant ice in the Mississippi valley (Wright, 1985). When the ice dams broke, the river scoured its valley about 150 feet below its present floodplain. This channel has since filled with sediment back to about its original level. The South Branch of Root River at Mystery Cave apparently did not experience this short phase of entrenchment.

Past Water Flow in Mystery Cave

Scallop Data

Scallops are asymmetrical hollows in soluble bedrock formed by turbulent eddies in rapidly moving solvent water. They indicate two things of importance to interpreting cave origin: the direction and velocity of the last flow to significantly enlarge a given cave passage. This is convenient, because the scallops persist after the passage has been abandoned by the flow that formed it.

The direction of flow is indicated by the asymmetry of the scallops. The steep side of the divide between scallops is on the downstream side, as it is in a sand dune or current ripple mark. Running a hand along the wall, one finds that the sharp edges of the scallops feel rougher in the upstream direction than in the downstream direction. It helps to imagine the asymmetry to be like the teeth in a saw.

The velocity of flow is inversely proportional to the scallop length, measured in the direction of flow (Curl, 1974). A one-inch-long scallop represents twice the velocity of a two-inch-long scallop. Since the scallops in a passage exhibit a variety of lengths, a weighted mean is used that emphasizes the larger (and presumably better-developed) scallops. Measure the maximum crest-to-crest length of all scallops in a given area, cube each measurement, then square each measurement. The weighted mean recommended by Curl is the Sauter mean, in which the sum of all the cubed values is divided by the sum of all the squared values. In practice, there is little need for this amount of rigor, since we are interested in rough comparisons between different parts of the cave. Furthermore, if one selects just the well-developed scallops, a simple arithmetic mean (average) length is sufficient (Palmer, 1976).

The scallops indicate the flow velocity right near the wall. However, the velocity of turbulent water increases logarithmically away from the walls. Thus the velocity at a distance of two inches from the wall would be twice as great as the velocity at a distance of one inch from the wall. To obtain the average velocity within the passage, it is necessary to integrate the velocity across the entire passage radius. Curl (1974) provides solutions for two end members: tubes of circular cross section and narrow fissures. Considering the uncertainty of scallop preservation and interpretation, and the irregularity of passages, it is convenient simply to use the average scallop length to find the velocity near the wall and to consider that to be a representative velocity for the entire passage, or a particular part of the passage. Using the experimental results of Curl (1974), it is possible to simplify the otherwise complex calculation by using the following expression (Palmer, 1981):

velocity (cm/sec) = 350 / L

where L = scallop length in centimeters. Thus a passage containing scallops with an average length of 5 cm was last enlarged by water with a velocity of at least 70 cm/sec, or about two feet per second. Calculations can be easily made right in the cave and compared from one place to another.

The apparent origin of Mystery Cave by underground piracy of the South Branch of Root River would seem to provide an ideal setting for scallop development. However, the mottled texture of the Stewartville Formation is not conducive to scallop development. Projections caused by differential solution interfere with the eddies that would otherwise form scallops. In addition, scallops require rather uniform bedrock texture to achieve their natural form. The best strata for preserving scallops are the transitional beds between the Stewartville and Dubuque and the limestone units within the
Dubuque. However, most of the Dubuque is exposed in high-level passages subject only to relatively static ponding during floods, and so scallops are largely absent from the Dubuque as well. As a final complicating factor, even well-developed scallops are scattered among many alternate paths of flow, so it is difficult to draw together their individual characteristics into a single cave-wide interpretation. We are left with relatively few interpretable scallops.

Scallops are best preserved in the Door-to-Door Route and in Mystery III. In both locations the Dubuque and transitional beds are exposed in passages low enough in elevation to allow invasion by high-velocity floodwaters. During the leveling project, scallops were observed in the following locations (calculated velocities are rounded off slightly):

Station	Location	Scallop Length Min. Velocity	
1.5	•		
H377	between Bomb Shelter and Big Fork	1.5 cm	230 cm/sec
H401-403	crawl beyond Big Fork	3 cm	115 cm/sec
H416	fissure beyond Big Fork	1 cm	350 cm/sec
H429	fissure near Little Fork	9 cm	40 cm/sec
H646	Culverts	1.5 cm	230 cm/sec
H655	fissures northwest of Culverts	3-6 cm	60-115 cm/sec

All of the above indicate flow away from Mystery I toward Mystery II.

H22	Discovery Route (Mystery III)	12-15 cm	25-30 cm/sec H16
	passage to 1st Triangle Room	2.5 cm	140 cm/sec
H32	passage to Fifth Ave. West	2,5-10 cm	35-140 cm/sec
H29	passage to Rotunda Room	15 cm	25 cm/sec
H27	above Lily Pad Lake	2.5 cm	140 cm/sec
H33	Fingers area	2.5 cm	140 cm/sec

All of the above indicate flow toward the north, northeast, or east (depending on orientation of passage).

Rather high velocities are indicated by these scallop measurements. During floods, water moves very rapidly through narrow passages where there is no alternate route. Such passages commonly contain coarse sediment such as sand and gravel, although these coarse sediments may be concealed beneath a cover of fine-grained sediment deposited on top during ponding events. In places, water ponds up in nearly static lakes where a downstream constriction prevents it from exiting a given passage at the same rate that it enters. Such areas of static ponding do not contain scallops and are recognized only by fine-grained sediment (clay and silt) and by injection floodwater features such as ceiling pockets and joint-controlled dead-end fissures.

Sediment Grain Size as a Velocity Indicator

From the above discussion, it is clear that sediment is an important indicator of flow velocity and should be used in conjunction with scallops in interpreting the hydraulics of the cave. There are various ways to estimate flow velocity from the grain size of sediment. The most commonly used method is the experimental graph of Hjulström (1935), which shows the minimum velocities at which sediment grains of a given size are eroded and deposited (Figure 14). This graph is obviously generalized, because these critical velocities depend on many other factors besides grain size, such as channel size and gradient, temperature, and density and shape of grains. Yet it is ideal for rough estimates of comparable accuracy to scallop data.

The silt deposits in the cave have an average grain size of about 0.05 mm indicates that incoming water required a velocity greater than about 20 cm/sec to erode the silt, at least 0.2 cm/sec to transport it, and less than 0.2 cm/sec to deposit it. Cobbles of at least 10 cm diameter are also found in the gravels on the Door-to-Door Route. These required velocities of more than 300 cm/sec to be eroded, at least 200 cm/sec to be transported into the cave, and less than 200 cm/sec to be deposited.

Figure 14: Diameter of sediment grains vs. the approximate current velocities needed to erode, transport, and deposit them (Hjulström, 1935).

Velocity estimates like this are tantalizing, but it is difficult to make much quantitative headway beyond the obvious fact that silt and clay represent relatively stagnant water and sand and gravel represent fast-moving water. For example, the presence of gravel in the cave requires a supply of gravel on the surface. This may not have been available at all times during the history of the cave. The thick silt may represent widespread availability of windblown material at the surface during glacial events, rather than special aspects of cave development. Much can be done on this subject, but any gains will be hard won.

Sediment Thickness and Bedrock Configuration at Mystery Cave

Seismic profiles were conducted mainly to determine the depth to bedrock in the valley adjacent to the cave. Seismic data, locations, and interpretations are given in Appendix 3. The cross section of the valley fill in the valley of the South Branch of Root River at the Mystery I entrance is shown in Figure 15. The average depth of sediment fill in the valley is 20-23 feet, increasing to a maximum measured value of 27 feet below Grabau Quarry. Depth to bedrock appears to be comparable in the uplands. It is 22 feet above Garden of the Gods in Mystery II, and between 10 and 20 feet in the field west of Walnut Cave. Walnut Cave is located in a residual bench of limestone over which the soil depth is only about 10 feet. Apparently the South Branch had cut its channel about 20-27 feet deeper in the past than it is at present, and has since been partly filled with sediment.

The seismic velocity of the surficial material (evidently the entire thickness) is surprisingly uniform over the entire area at about 1000 ft/sec, which indicates dry unconsolidated material. The water table is at or below the bedrock surface. This means that the South Branch is perched above the water table on rather impermeable material and loses its water only where it encounters limestone or similar permeable material in its bed. The uniformity of this material in both thickness and seismic velocity over the entire area suggests that it is wind-deposited silt (loess). Further discussion of the topic is given in the Interpretive Report.

Figure 15: Sediment thickness in the valley of the South Branch of Root River at the Mystery I entrance, as determined by refraction seismology.

WATER CHEMISTRY

Although water chemistry is covered in a separate report by Calvin Alexander and Roy Jameson, two aspects of the subject are of concern to the geologic interpretation of the cave: (1) the nature of the water that formed the cave, and (2) geochemical factors that control the mineral types and crystal habits of cave deposits. We made a few measurements specifically to investigate these questions, but our conclusions are based mainly on reports by others.

Chemistry of Cave-Forming Water

The location of Mystery Cave in a meander loop of the South Branch suggests that the cave originated by underground diversion of the river water, forming a sort of subsurface meander cutoff with the cave as a byproduct. Today the river is usually supersaturated with calcite and dolomite, except during floods. The maze pattern of the cave can be attributed at least in part to flooding, where high-gradient, aggressive flow enlarges many different passages at comparable rates (Palmer, 1975). This view is supported by the fact that the river water is most aggressive during flood stage -- and in fact may not be able to enlarge the cave at all at other times. Streams in the cave are generally supersaturated during all but the highest flow (see report on the LCMR Hydrology Project).

From the field and lab data of Shiela Grow (1986), we calculated the saturation indices of calcite and dolomite (square-root version) and the P_{CO2} and plotted this information vs. river stage. Several points had to be deleted because of obvious inaccuracies or instrumental problems; but the remainder, despite considerable scatter, showed a strong inverse relationship between river stage and saturation index. The data showed no significant relationship between river stage and P_{CO2} , although such a relationship is of little concern here.

River stage was measured on the metric staff gauge that was formerly located near the Mystery I entrance. Unfortunately the staff gauge was removed before it could be tied to our leveling survey. However, typical stage at base flow was about 40 cm, and this gives a rough idea of how the old values compare with more recent measurements.

The data pairs (stage vs. SI) were fit best by straight lines (Figures 16 and 17). The regression lines shown on the graphs do not include our 4-19-93 data point, as its relationship to the stage readings of Grow (1986) is uncertain. The correlation coefficient for the linear regression is -0.84 and the standard error is 0.24, showing a distinct inverse relationship. For dolomite the correlation coefficient is -0.84 and standard error is 0.27.

This information suggests that the river water today is aggressive with respect to either limestone or dolomite only when the stage exceeds about 62 cm, which represents a flood of only about 22 cm -- less than a foot. Such floods occur many times each year, and although they account for only about 10-20% of the time, they represent periods of significant cave enlargement under the conditions most favorable to the origin of a network maze.

During a moderate flood on April 19, 1993, the South Branch rose 3-4 feet, covering the floodplain around the Mystery-I ticket office. A water sample obtained no more than half an hour after the crest showed the river to have the following values: SIc = -0.52, SId = -0.79, and $P_{CO2} = 0.0011$ atm. Although these points fall considerably above the regression lines, the aggressive nature of the floodwater was verified.

Figure 16: Calcite saturation values (SI) vs. river stage in South Branch of Root River at Mystery I, calculated from chemical measurements by Grow (1986).

Figure 17: Dolomite saturation values (SI) vs. river stage in South Branch of Root River at Mystery I, calculated from chemical measurements by Grow (1986).

Ĺ

At nearly the same time, a sample was obtained from a floodwater pool below the Dome Room in Mystery I that yielded the following values: SIc = -0.22, SId = -0.46, and PCO2 = 0.00255atm. The cave water was distinctly aggressive with respect to both limestone and dolomite during the flood. The aggressiveness had diminished slightly because of mixing with supersaturated cave water and probably with solution of bedrock, but the rise in P_{CO2} (because of mixing with cave water and uptake of CO_2 from the cave atmosphere) helped to maintain the aggressiveness. The concept of cave enlargement under floodwater conditions is clearly supported by the data. There is no reason why the initial stages of cave origin cannot be attributed to similar waters.

What is the solution rate of the limestone? During low flow the water is nearly always supersaturated with respect to both calcite and dolomite. However, it is unlikely that there is any net deposition of either mineral because of solution during high flow, and because of the erosive power of the streams and the presence of sediment on the floors and walls. However, active solution can take place during high flow.

The saturation index of calcite can be converted to degree of saturation (or saturation ratio), C/C_s . The relationship is $C/C_s = \{antilog (SI)\}^{0.35}$. From the resulting values, the limestone solution rate can be determined (Palmer, 1991):

Solution rate = $11.7 \text{ k} (1 - \text{C/C}_{\text{s}})^{\text{n}} \text{ cm/year}$,

where k is approximately 0.008 for typical limestone and n is approximately 2.2.

Therefore, on Figure 16, when the SI of calcite is -0.5, C/Cs = 0.67 and the approximate solution rate is 0.008 cm/yr (80 microns/yr) -- although that rate of solution lasts only a few days or weeks during a normal year. At SI = -1.0, $C/C_s = 0.45$, and the approximate solution rate is 0.025 cm/yr (250 microns/yr). These estimates are probably high, because they are for non-dolomitic limestone, and they do not take into consideration shielding of the bedrock walls and floors by sediment. Still, the importance of low SI values is very clear. It is important to realize that this solution rate can be diminished by sediment armoring of the walls and floor. However, erosion by stream-borne sand during high-velocity flow can increase the rate of cave enlargement, although not significantly at the slow velocities observed in Mystery Cave.

Variation of pH with Time and Depth in Cave Pools

We were curious to see whether there was any change in pH with depth in the cave pools. Our pH meter can be read to the nearest 0.001 pH unit, although this degree of precision is not necessary (or even desirable) for most water-chemistry studies, since the pH is so sensitive to environmental changes that two decimal places is all that can be counted on. For detailed monitoring of fluctuations, however, the more precise instrument is ideal.

The results were surprising. Within the uppermost few centimeters in each pool the pH changed rapidly with depth. In pools agitated by drips or waterfalls the pH also fluctuated greatly with time, especially near the surface, but much less so with depth.

Most interesting was the fact that pH decreased with depth in some pools and increased with depth or remained constant in others. The Rock Garden and Turquoise Lake decreased in pH

downward; Sugar Lake was nearly constant in pH, with only a slight downward increase. The pH probe was waterproofed and held in place by a stiff wire to avoid motion. Measurements were repeated on three different days in Turquoise Lake and two different days in the Rock Garden. Measurements were made in three different places in Sugar Lake, with similar results.

In the Rock Garden (April 22, 1993) at a depth of 2 cm the pH stabilized at 8.307. At a depth of 5 cm it stabilized at 8.122. A large drip from the ceiling caused the pH to drop suddenly by 0.008 pH units, followed by slow recovery over the next few minutes back to 8.122. On an earlier day (April 12, 1993), the pH ranged from 8.222 at 2 cm to 8.045 at 5 cm.

In Turquoise Lake (April 22, 1993) at a depth of 2 cm the pH rose to 7.966 over the first 12 minutes, then dropped to 7.868 over the next 6 minutes, rose to 7.931 in 2 minutes, then dropped in an irregular pattern until the test was terminated at 25 minutes. Waves were visible from the waterfall at the far end of the pool, and turbulent eddies apparently caused the pH to fluctuate with a period of approximately 10 minutes (much less frequent than the waves, which had a period of less than a second). Soon afterward, at a depth of 60 cm, following recalibration, the pH rose gradually to 7.890 over the first 28 minutes, dropped suddenly to 7.882, then stabilized at 7.884 for 10 minutes. Apparently an eddy of slightly lower pH had moved into the area of measurement.

Earlier measurements in Turquoise Lake confirmed these findings: On April 12, 1993, the pH was observed to decrease from 7.930 at 2 cm to 7.815 at 15 cm. On April 20, 1993, the pH stabilized at 7.810 at 2 cm and 7.771 at 70 cm. The water entering the lake had a pH of 7.51. Apparently a great deal of CO_2 is lost from the surface of the water in the lake. On April 21, 1993, over a period of 20 minutes, the pH at 2 cm was observed to rise slowly to 8.020, drop to 7.954, then rise to 7.968, and finally drop to 7.887. At a depth of 30 cm the pH remained rather stable between 7.862 and 7.867. At a depth of 60 cm the pH remained rather stable between 30 and 60 cm. The difference is minimal and could have been induced by agitation of the water by insertion of the pH probe.

In Sugar Lake on April 21, 1993, at the western end, the pH stabilized at 7.930 at a depth of 2 cm, 7.967 at 5 cm, and 7.996 at 10 cm. Measurements elsewhere in the pool showed the same trend, but the differences were much smaller due to mixing caused by agitation during probe movement. The pH was monitored over a 23-minute period on April 23, 1993, showing an asymptotic rise to 7.928 at a depth of 2 cm and 7.945 at 7 cm.

Mystery Pool (in Mystery II) showed decreasing pH with depth, from 8.062 at 2 cm and 8.051 at 15 cm. Repeating the shallow measurement yielded 8.063. The change with depth was distinct but not very substantial. Agitation of the water caused a rapid drop in pH to below 8, followed by a rapid rise to the former value when the water was allowed to stand.

Testing for drift with buffers showed a maximum of +0.02 units drift over 37 minutes. This is significant at the level of precision used in the monitoring, but the measured pH variations with time and depth were much greater. Furthermore, it does not affect the basic observations that pH varies with depth and over short time periods.

Water samples were taken at two depths in Turquoise Lake. At the surface, the water had a calculated P_{CO2} of 0.006 atmospheres and a calcite saturation index of +0.77. At a depth of 2.5 feet, the P_{CO2} was 0.007, with a calcite saturation index of +0.74. The stream feeding Turquoise Lake had a P_{CO2} of 0.013 and a calcite saturation index of 0.51. This brief test supported the view that the lake is

rapidly degassing, so it is more highly supersaturated at the surface than at depth. A more rigorous approach will be used in the future.

The preliminary interpretation is as follows: The water at the pool surfaces approaches CO_2 equilibrium with the local cave atmosphere fairly rapidly, whereas the chemistry of the relatively stagnant water below responds much more slowly. A downward decrease in pH could mean one of two things: either the surface has responded to a recent decrease in CO_2 in the cave atmosphere, or CO_2 is being generated at depth by biologic activity (oxidation of organic compounds, etc.). A downward increase in pH is most easily explained by a recent decrease in atmospheric CO_2 , but a valid interpretation must await water and air analyses. Interestingly, the downward increase in Sugar Lake was observed on the same day that a downward decrease was observed in Turquoise Lake.

These observations do not invalidate the measurements made during normal water chemistry studies, where a single pH and water sample are taken. Mixing of the water during this process usually provides an average pool chemistry. The variations in pH that we have measured with time and depth have only a slight effect on the saturation index and overall interpretations.

LABORATORY ANALYSIS OF SPELEOTHEMS

Influence of Water Chemistry on Crystal Shapes in Pool Deposits

In general there are three major types of calcite crystals in Mystery Cave: needles, blades, and rhombs (parallelogram-shaped crystals). Examples are shown in Figures 18-20. The rate of CO_2 degassing in the pools correlates with the shape of the crystals forming there. Some pools in Mystery Cave are lined with needle-shaped crystals and some with rhombs. The needles form in the pools where there is rapid degassing of CO_2 . Blades form below water drips that are degassing, in shrub-like clusters (described in the Interpretive Report as "calcite shrubs"). Rhombs form in standing pools with very low water input. One potential problem is that water chemistry that we measure at any given time may not represent the conditions present when precipitation occurs. The close association between water chemistry and the crystal shapes of pool deposits suggests that this is not a great problem in Mystery Cave.

Turquoise Lake is fed by a small stream that is high in CO_2 , and degassing in the lake causes the pH to rise near the surface, where the CO_2 content is lowest. The stream is floored with tiny needles, and, at the inlet side of the lake, calcite pool fingers grow from the wall. Tiny calcite needles coat the calcite crust on the walls of the pool itself. The folia in Mystery Cave are found above the level of Turquoise Lake and represent a higher stand of the lake. Folia are found in only a few other caves associated with rapidly degassing CO_2 or H_2S in caves such as Lechuguilla Cave, New Mexico, and are considered by some people to be hydrothermal in origin. These subhorizontal fins consist of layered, fibrous, subparallel crystals building outward like successive awnings as the water level changed. Precipitation at the former water surface has left a litter of calcite rafts, abundant shelfstone, and raft cones all the way to the Bomb Shelter.

Considering the rate of CO_2 degassing, calcite precipitation in pools like Turquoise Lake must be rapid. It appears that needle-shaped calcite crystals represent rapid precipitation. Needle-like or fibrous crystals can form either above or below water if precipitation is rapid. Most vadose speleothems formed by degassing or evaporation are characterized by a fibrous texture of long, narrow crystals and probably have the same fast growth. For example, needle-shaped calcite crystals have formed on the pipe and catch basin near the end of Old Mystery Cave at a known rate of about 1 mm per 30 years. Apparently Turquoise Lake is rapidly degassing most or all of the time, because all its crystals are needle-shaped.

Shrubs consist of bladed crystals that grow in V-shaped twins whose arms are typically oriented at approximately 45 degrees to the main axis of the speleothem (and where they form at a pool surface, at 45 degrees to that surface). Shrubs often alternate either with flowstone, cave ice or botryoidal fibrous clusters (MY135). They consist of layered bundles of radiating needles that have coalesced into blades (Figure 21). Each layer is only about 50 microns (0.05 mm) thick (Figure 22). If the rate of deposition is similar to that in Old Mystery Cave, each layer could represent an annual cycle, and the change from needles to blades could be caused by seasonal or slightly longer-term variations in the rate of CO_2 input. The needles are called crystallites, which are smaller unit crystals with discrete crystal faces (Kendall and Broughton, 1978). Evidence for the former needle-shaped crystal structure is commonly present as long narrow inclusions of incompletely cemented void space around the former crystals (MY138). Kendall and Broughton used the inclusions as evidence for the presence of precursor crystallites that coalesced to former the larger fibrous crystals in stalactites. The 45-degree angle corresponds with the orientation of the faces of a unit rhombohedron rather than

Figure 18: Calcite needles in folia above Turquoise Lake (MY30). Enlargement = 6X (polarized light).

Contraction of the local distribution of the

Figure 19: Bladed calcite crystals coating calcite raft (MY33a). Enlargement = 100X (polarized light).

Figure 20: Calcite rhombs lining a pore in non-carbonate sediment (MY152). Enlargement = 200X (polarized light).

Figure 21: Bladed calcite crystals contain inclusions that outline the shapes of former needles (MY138). Enlargement = 20X (non-polarized light).

Figure 22: Layering within blades in calcite shrubs (MY11). Enlargement = 50X (polarized light).

Figure 23: Triangular cross sections of bladed crystals (MY10). Enlargement = 20X (polarized light).

a scalenohedral form of calcite (Dickson, 1978). Sometimes a central crystal grows with twinned crystals branching out on either side, forming a single stem with upward-facing, v-shaped crystals superimposed on the central crystal. In cross section, a single bladed crystal is triangular and consists of parallel rows of smaller triangles (Figure 23).

Fibrous calcite in pools that are rapidly degassing commonly contain organic filaments of unknown affinity. The organics are either carried in from outside or thrive on chemical reactions in the cave. Filaments less than a micron (.001 mm) wide meander through shelfstone deposits in pools that also contain calcite shrubs, both in Mystery Cave and in New York caves. Pool fingers cover the wall opposite the dam at Turquoise Lake. Pool fingers in New Mexico caves contain bundles of filaments in their centers. The filaments provided a substrate for calcite precipitation. Chenille spar, which consists of drape-like calcite deposits in pools, appears to be simply a thick, coalesced version of pool fingers.

In contrast, crystals with rhombic terminations form the calcite surface that lines standing pools like Sugar lake, Dragon's Jaw Lake, and the Tar Pit pools (see Figure 20). The chemistry of these pools is quite different from that of Turquoise Lake. In Sugar Lake the pH rises very slightly, if at all, with depth. This little pool contains bladed raft material and raft cones, like Turquoise Lake, but some of the rafts are coated with rhombs. Sugar Lake has no apparent recharge most of the time, but raft cones show that drips once entered it, or do so periodically. The chemistry of pools of this sort remains relatively constant. They are fed by water that has already degassed and precipitated flowstone. In places, thick, bladed flowstone coats sediment, in which the pores are lined by small calcite rhombs. This is an example of how rhombs are favored by a static chemical environment. In most cave pools in which degassing of carbon dioxide is minimal, the blades or rhombic crystal terminations are coated with very thin calcite sheets that diminish in area of coverage, so that the overall crystal appears to be shingled.

Current Hypotheses on Calcite and Aragonite Crystal Growth

There is a lively debate about what controls the shape of calcite crystals, and why aragonite precipitates in some areas instead of calcite. (This is obviously one of the burning issues of our time.) The following questions have never been satisfactorily answered: why is aragonite the dominant carbonate mineral precipitated in seawater, and what causes the variation in calcite crystal morphology from needle-shaped to rhombic? Experiments by Bischoff and Fyfe (1968) showed that the Mg ion inhibited calcite crystal growth. In an elegant paper expanding on this theme, Folk (1974) proposed that the Mg ion "poisoned" the surfaces of calcite crystals, preventing lateral growth and promoting the growth of needle-shaped calcite crystals and aragonite. The Mg/Ca ratio was therefore thought to be important in controlling the shape of calcite crystals. Taking a different approach, Given and Wilkinson (1985) pointed out that the local degree of supersaturation controls the shapes of calcite crystals and that the Mg/Ca ratio has only an indirect effect. They hypothesized that needle-shaped crystals would form where precipitation is driven by rapid degassing of CO_2 and/or evaporation, leading to high degrees of supersaturation. They showed that aragonite or needle-shaped calcite could grow in any environment irrespective of the Mg/Ca ratio, as long as the supply of $CO_3^{=}$ ions is high enough.

Gonzalez, Carpenter, and Lohmann (1992), for the first time, presented actual chemical data from cave water in which different types of calcite crystals were forming. Like Given and Wilkinson, they found that the calcite crystal shapes are controlled primarily by the degree of supersaturation. At

less than 6 times supersaturation, rhombs formed, whereas elongated crystals formed at greater values of supersaturation. At more than 12 times supersaturation, crystal faces became curved. They also noted that water chemistry was not completely responsible for crystal shapes, because needles and rhombic crystals form in water with overlapping chemical variables. They suggested that the rate of water flow was also essential in forming needle-shaped crystals because crystal growth is supposedly faster when the flow is fast. Apparently laying the magnesium theory to rest, they pointed out that needle-shaped calcite or rhombs can occur as either high- or low-Mg calcite. (Although calcite consists of CaCO₃, it incorporates various amounts of magnesium as an impurity.) X-ray data on speleothem fragments from Mystery Cave also show that the shape of calcite crystals is unrelated to the magnesium content (Figures 24 and 25, and summary of data in Appendix 8). All were low-magnesium calcite.

Our observations tend to support those of Gonzalez, Carpenter and Lohmann, in that growth rate seems to be the most important control over crystal morphology. However, we doubt that flow rate is significant. Needles and rhombs both form in pools in Mystery Cave, and the factor that controls them is clearly the rate of degassing. Supersaturation is the result of degassing of high- CO_2 water, which governs the growth rate and crystal structure. Comparing water chemistry in Mystery Cave with other caves in the United States, we found that needles can form in pools with either high or low magnesium content (see Tables 2 and 3, and Figures 26 a-c). The New Mexico cave pools have low levels of total Mg and Ca, with Mg distinctly higher than Ca becasue it is concentrated by evaporation. Water splashing onto fibrous-textured flowstone containing curved crystal terminations in Mammoth Cave, Kentucky, had the highest Ca/Mg ratio, while degassing pools with needles and shrubs were characterized by high Ca/Mg ratios. Static pools coated with shingled rhombs had the lowest Ca/Mg ratios.

In Mystery Cave, as in other caves, speleothems formed by the initial growth of numerous tiny crystallites that eventually coalesced. As suggested by Jones (1989) and Walkden and Berry (1984), crystal growth begins as either an aggregate of tiny needles oriented perpendicular to the substrate, or as sheets parallel to the substrate, depending on the growth rate. Needles form more rapidly. We did not address the aragonite problem, because to our knowledge aragonite is not precipitating in any of the cave pools. However, we have observed pools lined with aragonite in Carlsbad Cavern that are high in Mg but low in Ca. This was the only aragonite we have ever seen precipitating in cave water. It almost always forms by evaporation in contact with air and usually forms on dolomite bedrock. This is true in Mystery Cave, where aragonite is found on the Stewartville dolomite. This tends to support Folk's hypothesis that aragonite is favored by the presence of Mg ions.

and the second

Figure 24: Maximum peak values (2-theta) for different kinds of calcite speleothems in Mystery Cave. Higher values of 2-theta indicate greater amounts of magnesium in the calcite structure (see Figure 25).

Table 2: Summary of typical cave-water chemistry, sorted by total Ca + Mg. Analyses by A.N. and M.V. Palmer, except where otherwise noted. J+A = Roy Jameson and Calvin Alexander, LCMR Hydrology Project (1993); Oelker = Gregg Oelker, Pasadena, Calif. (1991). Average values are shown where more than one measurement is available for the same site.

Samples	I.D. No.	Ca	Mg	Total
		mmol/L	mmol/L	/ mmol/L
Overlook, pool #1, Mammoth Cave KY	MC1	0.80	0.41	1.21
Camp Pit, Mammoth Cave KY	MCC	0.84	0.45	1.29
Keller Shaft, Mammoth Cave KY	MCK	1.36	0.10	1.46
Lake Lebarge, Lechuguilla Cave, NM (Oelker)	LLB	0.83	0.88	1.71
Pelucidar drip, Lechuguilla Cave NM	LP2	0.64	1.15	1.79
Deep Secrets, mammillary pool, Lechuguilla Cave NM	LDS	0.61	1.28	1.89
Lake of Clouds, Carlsbad NM	CLC .	0.62	1.36	1.98
Mary's Vineyard, Mammoth Cave KY	MCV	0.88	1.14	2.02
Lake Louise, Lechuguilla Cave NM	LLL	1.00	1.13	2.13
Liberty Bell drip, Lechuguilla Cave NM (Oelker)	LBD	0.78	1.35	2.14
Sugarlands chenille pool, Lechuguilla Cave NM	LS1	0.57	1.67	2.24
New Mexico Room, aragonite pool, Carlsbad Caverns NM	CM6	0.48	1.84	2.32
South pool, Dreamland, McFail's Cave NY	MF2	1.39	0.95	2,34
North pool, Dreamland, McFail's Cave NY	MF3	1.49	0.87	2.36
New Mexico Room, aragonite pool, Carlsbad Caverns NM	CM2	0.45	1.99	2.44
Sulfur Shores, Lechuguilla Cave NM (Oelker)	LSS	1.10	1.34	2.44
New Mexico Room, Carlsbad Caverns NM	CM3	0.42	2.03	2.44
New Mexico Room, chenille pool, Carlsbad Caverns NM	CM1	0.42	0.42	2.47
New Mexico Room, aragonite pool, Carlsbad Caverns NM	CM5	0.49	2.01	2.50
Sugarlands, mammillary pool, Lechuguilla Cave NM	LS2	0.82	1.77	2.59
New Mexico Room below chenille pool, Carlsbad Caverns NM	CM4	0.49	2.13	2.62
Tar Pits, Mystery Cave MN (J+A)	MYT	1.17	1.47	2.64
Pelucidar lower pool Lechuguilla Cave NM	LP3	1.60	1.20 .	2.80
Oasis Pool, Lechuguilla Cave NM (Oelker)	LOP	0.82	2.12	2.95
Dragon's Jaw Lake, Mystery Cave MN (J+A)	MYD	1.34	1.69	3.03
Blue Lake, Mystery Cave MN (J+A)	MYB	1.65	1.39	3.04
Rock Garden, Mystery Cave MN (J+A)	MYR	1.11	1.94	3.05
Sugar Lake, Mystery Cave MN (J+A)	MYS	1.61	1.49	3.10
Overlook, pool #2, Mammoth Cave KY	MCO2	0.94	0.31	3.19
Blue Lake drips, Mystery Cave MN (J+A)	MYD1	1.74	1.45	3.19
Dreamland drip, McFail's Cave NY	MF1	2.48	0.93	3.41
Lily Pad Lake, Mystery Cave MN (J+A)	MYP	1.68	1.81	3.49
Frozen Falls pool, Mystery Cave MN (J+A)	MYF	2.00	1.79	3.78
Frozen Falls drip, Mystery Cave MN	MYFD	2.52	2.24	4.48.
Frozen Falls drip, Mystery Cave MN (J+A)	MYD5	2.39	2.16	4.55
Broken stal drip MCI-2, Mystery Cave MN (J+A)	MYD4	2.54	2.25	4.79
Rte. to Lake of Clouds, Carlsbad Caverns NM	CC	1.95	2.93	4.88
Turquoise Lake, Mystery cave MN (J+A)	MYT	2.62	2.30	4.93
Ceiling stal, MCI-4, Mystery Cave MN (J+A)	MYD3	2.68	2.35	5.03
Bedrock drips with syringe, Mystery Cave MN (J+A)	MYD2	4.22	2.33	6.55
Granddad, Mammoth Cave KY	MCD	4.42	9.09	13.51
Dilithium Pool, Lechuguilla Cave NM (Oelker)	LDP	14.15	2.00	16.15
Bitter Water Pool, Lechuguilla Cave NM (Oelker)	LBT	1.14	240.62	241.76

(law

 Table 3: Description of carbonate crystals forming in analyzed water. See Table 2 for location and water chemistry.

.

Samples	Description
MC1	Fibrous, dogtooth spar + shrubs
MCC	Twinned shrubs
MCK	Fibrous, dogtooth crystals
LLB	Curved fibrous
LP2	Dogtooth, stacked plates
LDS	Nonwarped fibrous
CLC	Fibrous
MCV	Warped, stacked rhombs
LLL	Aragonite + hydromagnesite
LBD	Rafts, cones, mammillary pool, dogtooth, fibrous
LS1	Stacked rhombs
CM6	Chenille spar, rafts, warped, stacked rhombs
MF2	Needles with tiny rhombs on tips
MF3	Shrubs
LSS	Aragonite, huntite fell into pool also
CM3	Non-warped blades on ice, dogtooth spar
CM1	No aragonite, some chenille, stacked rhombs
LS2	Aragonite, hydromagnesite nearby
CM4	Warped, stacked rhombs
MYT	No crystals in pool
LP3	Stacked rhombs
LOP	Fibrous, warped, some aragonite
MYD	Some rafts, non-warped stacked rhombs
MYB	Fibrous
MYR	Blades
MYS	Blades to rhombs
MCO2	Warped rhombs
MYD1	Dogtooth to needles
MYP	Needles to blades
MYF	Stacked blades to needles
MYFD	Shrubs with pyramidal crystals
MYD4	Twinned stalks
CC	Stalks with stacked blades
MYT `	Needles
MCD	Warped rhombs
LDP	Gypsum blades
LBT	Hydromagnesite balls, non-warped and non-stacked pyramids

í

50

. .

Figure 26A: Water analyses from a variety of caves including Mystery Cave, sorted by magnesium content. See Tables 2 and 3 for sample locations and description of speleothems.

5]

Figure 26B: Cave water analyses, sorted by total Ca + Mg content. See Tables 2 and 3 for sample locations and description of speleothems.

1.1

Figure 26C: Cave water analyses, sorted by Ca/Mg ratio. See Tables 2 and 3 for sample locations and description of speleothems.

A Few Observations about Speleothems in Mystery Cave

Stalactites and stalagmites

The stalactites in Mystery Cave have a pattern typical of most stalactites in having a primary thin (soda straw) core surrounded by layers of radial fibrous crystals. A stalactite fragment from near Dragon's Jaw Lake is a typical example. The initial drips that formed the stalactite deposited a thin sheet of calcite plates. By making a number of microscopic offsets, the plates of the soda straw have grown downward and outward and become the radial fibrous crystals perpendicular to the soda-straw walls. This suggests an outside attraction such as evaporation, with wicking of intercrystalline water from the inside. In other stalactites the inner soda straw plates do not bend outward. Instead, layers of fibrous crystals grow perpendicularly from the outside of the initial soda straw, but their outer edges are truncated at various angles (Figure 27). The surface may have been dissolved periodically by floodwater or by condensation of water from air. Some stalactites have silt and clay clastic sediment between the outer layers, showing that water from outside the stalactite tube coated it with sediment, possibly during flood events.

The central tube of a stalactite fragment from the Tar Pits is almost completely blocked by monocrystalline calcite, except for a tiny central hole (Figure 28). This may have been caused by a decrease in the drip rate. In a closed system, with only a small amount of recharge, the central tube can act like a tiny pool environment and acquire crystals similar (but on a much smaller scale) to pool deposits. Such monocrystalline cores are common in many of the older stalactites in the cave and may represent a climate change from wet interglacial to dryer glacial conditions.

The Door to Door route contains many areas of naturally broken speleothems. For example, MY 214 from the Culverts area probably represents a typical stalagmite. Dripping water formed thin layers of fibrous spar perpendicular to the floor. The layering represents periods of growth with periodic interruptions, as shown by the fact that certain layers cover the truncated surfaces of the layer beneath, as in the Dragon's Jaw Lake stalactite. Because the layers of spar in stalagmites form in thin films of water, the crystals have the same morphology as those in flowstone. Sample MY214 contains layers that are very porous. The pores were once water filled and behaved as tiny pockets that were roofed over by later calcite.

Iron-rich speleothems

Shaly limestone from bed DS11 (MY76) in the western part of Fifth Avenue contains patches of hematite (iron oxide) and gypsum (Figure 29). Both the hematite and the gypsum were derived from the oxidation of former pyrite. Most of the gypsum forms concentric balls of crystals surrounded by a rim of hematite pushed outward by the gypsum.

Another sample is a small iron-rich stalactite that peeled off flush with the ceiling. Its upper end is flared so that its broken top is flat where it once was attached to the ceiling. The stalactite appears to have originated as a thin film of calcite on the ceiling, and as water eventually consolidated into a drip, it formed a soda straw with walls surrounding a narrow central canal. Layers of radial fibrous crystals formed around the central soda-straw core. The calcite layers are separated by layers of iron oxide deposited by the water from the bedding plane above. This is apparently a miniature version of the iron-oxide-rich stalactites in the Formation Room.

Figure 27: Cross section of stalactite fragment MY130, showing truncated layers (arrow). Enlargement = 60X (non-polarized light).

Figure 28: Cross section of stalactite fragment in which the central tube is nearly filled with calcite (MY130). Enlargement = 8X (polarized light).

Figure 29: Gypsum clusters (white) surrounded by hematite (black) from the weathering of pyrite (MY78). Enlargement 3X (polarized).

Levels of Static Ponding

There are well-defined levels of deposition that represent old water levels -- mainly shelfstone and rimstone. These were carefully measured during the leveling project. It is quite clear from their disparate elevations that almost none of them correlate with each other! Ponding is controlled entirely by local conditions, such as breakdown and sediment fill. Former water levels, as shown by shelfstone, can be traced for short distances with very little if any change in elevation. However, from one passage to another there is no correlation in elevation. They do not represent widespread ponding levels but are local pools fed by infiltrating water from the surface, as at Blue Lake, Dragon's Jaw Lake, and Turquoise Lake. Many are still actively forming, although some have been covered by later sediment, as in the Bomb Shelter area. In Mystery I much shelfstone was removed from the route between Turquoise Lake and the Bomb Shelter to help open the area to visitors during the early days of commercialization. This broken material was dumped into the low area below Frozen Falls to build up the trail in that area. This dump site was re-excavated in the early 1990s, and the fragments of shelfstone took yet another trip, this time to a dump pile by the driveway. Some of the better-looking pieces were moved to the Cathedral Room or to the old outhouse across the river. We salvaged some of the material from the dump pile and outhouse for analysis.

VIBRATION MEASUREMENTS

The Bison seismometer was used in the Garden of Gods and nearby passages to determine the effect of surface-induced vibrations on the cave. This study was intended to shed light on the following: (1) possible damage to the cave as the result of future blasting in Grabau Quarry and movement of heavy trucks on the north-south road that passes over the cave near Garden of the Gods; (2) prolonged creaking or groaning noises in Mystery II, suggesting the movement of rocks; (3) vibrations felt in the cave when a bulldozer was operating near the Mystery II entrance.

Vibration energy from a shock source diminishes greatly with distance -- roughly with the square of the distance. Therefore a disturbance that produces a certain vibration at 10 feet will produce only about 25% as much vibration at 20 ft. Local disturbances in the cave, such as footsteps and drips, can produce large vibration amplitudes over short distances, but their overall energy is tiny compared to shocks that disperse energy throughout large areas, such as quarry blasts.

The seismometer was first tested with normal footsteps near the geophone, which was planted in the gravel pavement of the trail near Garden of the Gods. At full gain, mean vibration level from normal sneakered footsteps at 10-ft distance was used as a personal standard (amplitude = 1.0 units). Background vibration in the dry parts of the route was undetectable.

The geophone was then planted in a crack in flowstone in contact with the bedrock wall of Garden of the Gods. The background vibration was 0.07 units because of much dripping water. There were occasional 5-10 sec episodes of intensified low-frequency vibration of 0.1 - 0.17 units, possibly because of disturbance of tree roots by gusts of wind, which were intensifying at the time. A moderately loaded Ford Econoline van was then repeatedly driven over the driveway near the entrance gate to the Mystery Cave property, closest to the Garden of the Gods. There was <u>no</u> measurable increase in vibration. The van was then repeatedly driven over a 6"-diameter log at the same location. During this time, short bursts of vibration up to 0.1 unit were observed in the cave, barely exceeding the background level. Finally, a 1"-thick aluminum plate was repeatedly struck with a sledge hammer at the same surface site. This produced short vibration bursts of 0.3 - 0.5 units. The hammering therefore produced vibration intensities about 3 to 5 times greater than that of the truck driven over the log. Neither was detectable without the seismometer.

The geophone was then moved to the sediment on the floor of Garden of the Gods. Vibration increased considerably because of the many nearby drips of water from the walls and ceiling. The greatest amplitude was caused by a drip from a height of 10 ft. into a slightly concave pocket in the sediment floor. At a distance of one inch, it drove the meter right off the scale -- at least twice the amplitude of the standard footfall. However, because of the close proximity to the geophone, the drip represented much less energy than the footfall.

These vibration measurements shed a little light on the questions posed above. However, much more sophisticated analyses and vibration sources are needed for a full evaluation. Apparently normal traffic on the surface has minimal effect on the cave. Intense shocks, such as quarry blasts, would have a much greater effect. A drop of water or a footfall can send the meter off the scale at short distances, but the energy level is considerably smaller than vibrations generated by larger remote sources. Measurements within the cave are useful only in providing interesting comparisons. Widespread low-frequency, high-energy vibration is potentially the most damaging. Unfortunately it is difficult to estimate how much vibration energy the cave can tolerate before rockfall occurs. The structural attributes of the cave are very complex compared to those of artificial structures.

A few observations may help to clarify the situation. In general, the cave passages are extremely stable. They have not been blasted out of the native rock, but enlarged by solution, with natural rockfall stabilizing otherwise unstable spots. The high, narrow fissure passages are most stable, but some of the wide flat-ceilinged passages in the Dubuque are rather unstable, and occasional rockfall in such areas is likely.

Sediment fill in the cave vibrates discontinuously with the bedrock. The amplitude of vibrations increases when shock waves encounter the sediment, and the overall potential for damage is greater for anything situated on the sediment (walls, stalagmites, etc.). In general the bedrock moves more or less as a unit, so the bedrock structure of the cave is relatively stable. Stalactites and stalagmites oscillate at different frequencies and can snap off if the vibration is exceptionally great. This is unlikely. The many naturally broken speleothems in the cave probably met their fate during freeze-thaw cycles during the last glaciation, rather than as the result of an earthquake. Earthquakes, which represent the largest probable source of energy in the area, rarely have any significant effect on caves. Likewise, surface sources, although potentially closer, would have little effect; most of their energy is dissipated as surface waves that die out rapidly with depth below the surface.

The source of the creaking and groaning in the cave is enigmatic, and it is impossible to identify them without first-hand experience. However, similar sounds have been heard in other caves. Groaning Cave in Colorado was named for similar sounds whose source could not be identified. We have heard short-duration sounds of this sort in the vicinity of breakdown piles, particularly those cemented with a matrix of sediment. Settling and shifting of blocks in such areas is common, especially during relatively wet periods.

In addition, water flowing into the west end of Fourth Avenue beyond the Yellow Flow during periods of high discharge produces a reverberating pounding sound reminiscent of the sounds reported by the guides. It is likely that many of the reported noises can be attributed to water movement, especially since there is such a large fluctuation of water levels in the cave.

The source of natural disturbances in the cave is an interesting area for further study -although not necessarily a fruitful one. A triple array of continuously recording seismometers could be set up to identify the location of vibration sources, the nature of the vibrations, and possibly the direction of displacement that causes the vibrations, much like earthquake seismology.

CONCLUSIONS

Several lines of research have proved useful in the interpretation of Mystery Cave. Although this is only a preliminary report, to be updated and expanded in 1994, results to date include the following: (1) A geologic profile was made in the main passages of the cave. This apparently represents the most detailed survey of its kind in any cave. (2) Bench marks were placed in many locations in the cave and on the surface and were tied to the 1989 DNR survey bench marks. Discrepancy between our underground survey and the DNR surface survey was within 5 cm. (3) Analysis of bedrock samples has provided information about the environment of deposition of the rocks, explains the texture of the rocks as they appear in the cave, and gives new criteria (mainly dolomite content) for subdividing the Dubuque Formation into members. (4) Analysis of speleothems and water chemistry relate the crystal structure of the speleothems to pool chemistry. This information will help interpret past conditions in caves that are no longer active. (5) Seismic profiles show that the bedrock floor of the valley of the South Branch of Root River lies 20-27 feet below the present valley floor and is more or less at grade with the passages in Mystery Cave. The silt in the cave appears to be the same material (apparently mostly loess) that fills the valley. (6) The origin of the cave seems to have been intimately controlled by the entrenchment history of the South Branch and probably 500,000 - 1,000,000 years old. (7) Structural mapping shows that the northwest-southeast fissure passages in the northeastern part of Mystery Cave appear to be controlled by a sharp steepening of dip. (8) Normal traffic over the cave, including truck traffic, has little vibrational effect on the cave.

Mystery Cave proves to be a significant natural laboratory for scientific study. Few caves in the United States contain as much information about glacial history, structural control of passages, crystal growth, and water flow. Minnesota is fortunate to have a cave of this calibre.

REFERENCES

- Bischoff, J.L., and Fyfe, W.S., 1968, Catalysis, inhibition, and the calcite-aragonite problem: American Journal of Science, v. 266, p. 65-79.
- Blatt, H., Middleton, G., and Murray, R., 1980, Origin of sedimentary rocks (2nd ed.): Englewood Cliffs, NJ, Prentice-Hall, Inc., 782 p.
- Compton, J.S., 1988, Sediment composition and precipitation of dolomite and pyrite in the Neogene Monterey and Sisquoc Formations, Santa Maria Basin area, California, in Sedimentology and geochemistry of dolostones, Shukla, V., and Baker, P.A. (eds.): Society of Economic Petrology and Mineralogy Special Publication 43, p. 53-64.
- Curl, R.L., 1974, Deducing flow velocity in cave conduits from scallops: National Speleological Society Bulletin, v. 36, p. 1-5.
- Delgado, D.J., 1983, Deposition and diagenesis of the Galena Group in the Upper Mississippi Valley in Ordovician Galena Group of the Upper Mississippi Valley - deposition, diagenesis, and paleoecology, Delgado, D.J. (ed.): Guidebook for the 13th Annual Field Conference, Great Lakes Section, SEPM, p. A1-A17.
- Dickson, J.A.D., 1978, Length-slow and length-fast calcite: a tale of two elongations: Geology, v. 6, p. 560-561.
- ----, 1993, Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates: Journal of Sedimentary Petrology, v. 63, p. 1-17.

Easton, W.H., 1960, Invertebrate paleontology: New York, Harper and Row, 701 p.

- Folk, R.L, 1974, The natural history of crystalline calcium carbonate: effect of magnesium content and salinity: Journal of Sedimentary Petrology, v. 44, p. 40-53.
- Friedman, G.M., 1980, Dolomite is an evaporite mineral: evidence from the rock record and from seamarginal ponds of the Red Sea, in Fossil algae, recent results and developments, Flugel, Erik (ed.): Springer-Verlag, N.Y., p. 66-73.
- Given, R.K., and Wilkinson, B.H., 1985, Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates: Journal of Sedimentary Petrology, v. 55, p. 109-119.
- Gonzalez, L.A., Carpenter, S.J., and Lohmann, K.C., 1992, Inorganic calcite morphology: roles of fluid chemistry and fluid flow: Journal of Sedimentary Petrology, v. 62, p. 382-399.
- Grow, S.R., 1986, Water quality in the Forestville Creek karst basin of southeastern Minnesota: M.S. thesis, University of Minnesota, Minneapolis, MN, 229 p.

- Hallberg, G.R., Witzke, B.J., Bettis, E.A., and Ludvigson, G.A., 1985, Observations on the evolution and age of the bedrock surface in castern Iowa in Pleistocene geology and evolution of the Upper Mississippi Valley, Lively, R.S. (ed.): Abstracts and Field Trip Guide, Minnesota Geological Survey, St. Paul MN, p. 15-19.
- Hardie, L.A., 1987, Perspectives dolomitization: a critical view of some current views: Journal of Sedimentary Geology, v. 57, p. 166-183.
- Harmon, R.S., Ford, D.C., and Schwarcz, H.P., 1977, Interglacial chronology of the rocky and Mackenzie Mountains based on ²³⁰Th/²³⁴U dating of calcite speleothems: Canadian Journal of Earth Science, v. 14, p. 2543-2552.
- Hennig, G.J., Grun, R., and Brunnacher, K., 1983, Speleothems, travertines and paleoclimates: Quaternary Research, v. 29, p. 1-29.
- Hill, C.A., and Forti, P., 1986, Cave minerals of the world: Huntsville, Ala., National Speleological Society, 238 p.
- Hjulström, F., 1935, Studies of the morphological activity of rivers as illustrated by the River Fyris: Univ. of Uppsala, Geological Institute Bulletin 25, p. 221-557.
- Hobbs, H.C., 1985, Quaternary history of southeastern Minnesota, in Pleistocene geology and evolution of the Upper Mississippi Valley, Lively, R.S. (ed.): Abstracts and Field Trip Guide, Minnesota Geological Survey, St. Paul MN, p. 11-14.
- Jones, B., 1989, Syntaxial overgrowths on dolomite crystals in the Bluff Formation, Grand Cayman, British West Indies: Journal of Sedimentary Petrology, v. 59, p. 839-847.
- Kendall, A.C., and Broughton, P.L., 1978, Origin of fabrics in speleothems composed of columnar calcite crystals: Journal of Sedimentary Petrology, v. 48, p. 519-538.
- Levorson, C.O., and Gerk, A.J., 1983, Field recognition of stratigraphic position within the Galena Group of northeast Iowa (limestone facies), in Ordovician Galena Group of the Upper Mississippi Valley, deposition, diagenesis and paleoecology, Delgado, D.J. (ed.): Guidebook for the 13th Annual Field Conference, Great Lakes Section, SEPM, p. C1-C11.
- Lively, R.S., and Alexander, E.C., 1985, Karst and the Pleistocene history of the Upper Mississippi River Valley in Pleistocene geology and evolution of the Upper Mississippi Valley, Lively, R.S. (ed.): Abstracts and Field Trip Guide, Minnesota Geological Survey, St. Paul MN, p. 31-32.
- Mason, J.A., 1992, Loess distribution and soil landscape evolution, southeastern Minnesota: M.S. thesis, University of Minnesota, St. Paul, MN, 407 p.
- Milske, J.A., 1982, Stratigraphy and petrology of clastic sediments in Mystery Cave, Fillmore County, Minnesota: M.S. thesis, University of Minnesota, St. Paul, MN, 111 p.

- Milske, J.A., Alexander, E.C., and Lively, R.S., 1983, Clastic sediments in Mystery Cave, southeastern Minnesota: National Speleological Society Bulletin, v. 45, p. 55-75.
- Mullins, H.T., Dix, G.R., Gardulski, A.F., and Land, L.S., 1988, Neogene deep-water dolomite from the Florida-Bahama platform in Sedimentology and geochemistry of dolostones, Shukla, V., and Baker, P.A. (eds.): SEPM Special Publication 43, p. 235-243.
- Oelker, G.L., 1991, The Lechuguilla Cave water study: unpublished report.
- Palmer, A.N., 1975, The origin of maze caves: National Speleological Society Bulletin, v. 37, p. 36-56.
- ----, 1981, A geological guide to Mammoth Cave National Park: Teaneck, N.J., Zephyrus Press, 210 p.
- ----, 1991, Origin and morphology of limestone caves: Geological Society of America Bulletin, v. 103, p. 1-21.
- Palmer, M.V., 1976, Ground-water flow patterns in limestone solution channels: MA thesis, State University of New York, College at Oneonta, 150 p.
- Phillips,. W.R., and Griffen, D.T., 1981, Optical mineralogy, the nonopaque minerals: San Francisco, W.H. Freeman and Co., 677 p.
- Scholle, P.A., 1978, Carbonate rock constituents, textures, cements, and porosities: American Association of Petroleum Geologists Memoir 27, 241 p.
- Seyfert, C.K., and Sirkin, L.A., 1979, Earth history and plate tectonics: New York, Harper and Row, 600 p.
- Sloan, 1985, Pleistocene fluvial geomorphology of southeastern Minnesota, in Pleistocene geology and evolution of the Upper Mississippi Valley, Lively, R.S. (ed.): Abstracts and Field Trip Guide, Minnesota Geological Survey, St. Paul MN, p. 27-30.
- ----, (ed.), 1987, Middle and Late Ordovician lithostratigraphy and biostratigraphy of the Upper Mississippi Valley: Minnesota Geological Survey, Report of Investigations 35, 232 p.
- ----, 1987, Tectonics, biostratigraphy and lithostratigraphy of the Middle and Late Ordovician of the Upper Mississippi Valley in Middle and Late Ordovician lithostratigraphy and biostratigraphy of the Upper Mississippi Valley: Minnesota Geological Survey Report of Investigations 35, p. 7-20.
- Sloan, R.L., and Webers, G.F., 1987, Stratigraphic ranges of Middle and Late Ordovician gastropoda and monoplacophora of Minnesota, in Middle and Late Ordovician lithostratigraphy and biostratigraphy of the upper Mississippi Valley, Sloan, R.E. (ed.): Minnesota Geological Survey Report of Investigations 35, p. 183.

- Sloss, L.L., 1963, Sequences in the cratonic interior of North America: Geological Society of America Bulletin, v. 74, p. 93-114.
- Southgate, P.N., 1986, Cambrian phoscrete profiles, coated grains, and microbial processes in phosphogenesis: Georgina Basin, Australia, Journal of Sedimentary Petrology, v. 56, p. 429-441.
- Walkden, G.M., and Berry, J.R., 1984, Natural calcite in cathodoluminescence: crystal growth during diagenesis: Nature, v. 308, p. 525-527.
- Witzke, B.J., 1983, Ordovician Galena Group in Iowa subsurface in Ordovician Galena Group of the Upper Mississippi Valley - Deposition, diagenesis, and paleoecology, Delgado, D.J. (ed.): Guidebook for the 13th Annual Field Conference, Great Lakes Section SEPM, p. D1-D26.
- Wright, H.E., 1985, History of the Mississippi river in Minnesota below St. Paul in Pleistocene geology and evolution of the Upper Mississippi Valley, Lively, R.S. (ed.): Abstracts and Field Trip Guide, Minnesota Geological Survey, St. Paul MN, p. 1-2.

n senara na provinsi na manana di kana na manana ma Na manana na manana manana manana manana na manana na manana manana manana manana manana manana manana manana ma

The following semi-permanent points serve as bench marks for elevations in Mystery Cave. Their locations are shown on the accompanying map and are described below. Some are located on features that may change with time, such as handrails; these are generally accompanied by a nearby permanent station such as a chiseled + in the wall. Bench marks are arranged in order as they are encountered in traveling from Mystery I to Mystery II.

Bench Mark Altitude (ft) Location Feature D1 1230.37 ft. nail in basswood tree South of Mystery I ticket office, on east side of trees, 1 ft above ground. 1228.36 D861 + on rock wall Walnut Cave entrance, + chiseled in rock face 2-3 ft south of entrance: DROCK D873 1244.41 + on cliff face Chiseled + in bedrock wall 5 ft north of north end of Old Mystery Cave entrance, one foot higher than the top of the entrance arch, and in same bed that forms the top of the entrance arch. D863 1211.41 Chiseled + in northwest wall of Old + on wall Mystery Cave, 4.3 ft above floor in middle of bed DL3, 0.38 ft above old shelfstone top. D868 1209.26 top of basin Topmost point on south corner of artificial catch basin below waterfall near end of Old Mystery Cave: BASIN BLOCKS IN TOP OF BASIN WALL (LOOKING DOWN) + on cliff face D879 1254.95 Chiseled + on smooth recessed bed on west-facing section of cliff, one foot below geode in overlying bed,

> and located between geode and entrance; 3 ft south of entrance arch, on right wall (facing entrance).

Top surface of lower hinge on floodproof door at Mystery I entrance:

1" chiseled + in concrete wall to south of inner door of Mystery I

Small stalagmite on south side of main passage in Mystery I, across from opening to Needle's Eye passage, now below level of trail.

In main passage of Mystery I, 1 inch below top of bed DL9, under ledge, 3 ft above trail on northwest side of opening to Needle's Eye passage.

At Needle's Eye, top of small stalagmite on southeast wall of entrance of fissure that drops to stream:

Chiseled + in bed DL6, on south side of concrete ramp in main passage of Mystery I leading to Formation Room passage, 1.5 ft above ramp, 1 ft to west of (and 4" below) phone box. In passage to Formation Room: top surface of northeast end of southeast handrail on bridge across fissure, next to bedrock wall:

Chiseled + on northwest wall of passage to Formation Room, 3 ft above floor, in bed DL1, at northeast end of grate over fissure in floor.

D460 1225.76 + in concrete

- D2 1218.56 top of stalagmite
- D698 1216.26 + on wall

D328 1210.46 top of stalagmite

+ on wall

+ in artificial wall

D335 1209.54 top of railing

D701 1213.28

D728 1208.97

1218.54

D3

D707

D37

1218.79

1220.87

lower tip of stalactite Lower tip of broken stalactite with iron-oxide core -- easternmost and largest of deflected stalactites at north end of Formation Room, 6.2 ft above sediment floor:

FA ONDE ZONE BROKEN-TIP STALACTITES

D704	1212.22	+ on wall
S360	1226.07	radio location
D4	1216.93	top of railing

top of railing

+ on artificial wall

top of stalagmite

Top of northwest elbow of handrail at west end of bridge by Frozen Falls:

P3 + RAILINGS BRIDGE

Chiseled + at entrance to passage to Cathedral Room, on west wall, 2 ft above trail at bottom of steps, in bed DL5.

Nail with flagging in floor at top of stairs in Cathedral Room, marking radio transmitter station. Top of southeast elbow of handrail at

east end of bridge by Frozen Falls:

1

Chiseled + in artificial rock face 1.5 ft above trail on south side of main passage of Mystery I, opposite western end of Rock Garden, about 2 ft west of western end of railing, 1.8 ft below top of flowstone cap over sediment.

Top of tiny stalagmite in Rock Garden, immediately east of small dripstone column near north wall of passage:

D37 ROCK GARDEN KNOBBY STALAGHITE

D710	1220.83	top of stalagmite	Top of stalagmite on flowstone-ce- mented breakdown slab on south side of main passage of Mystery I, 3.9 ft above concrete trail, just before broad flowstone mound with rippled surface on same side of passage, and 15 ft west of broken eastern end of
D714	1216.25	+ on wall	flowstone cap over sediment. Chiseled + on west wall of passage to Turquoise Lake, 6 ft from junction with main passage of Mystery I, 3.3 ft above concrete trail, in bed DL8
S44 D717	1214.59 1218.39	top of concrete dam + on wall	Flat top of dam at Turquoise Lake. chiseled + in bed DL10, 4 ft above trail on south side of main passage in Mystery I, 14 ft beyond eastern- most raft cone in western group of cones.
D719	1217.19	top of raft cone	Tip of westernmost raft cone on south side of main passage of Mystery I in eastern group of cones, 2 ft west of cone that occupies middle of trail.
D53	1219.15	top of stalgmite	Top of small muddy stalagmite on east wall of Bomb Shelter, 1.4 ft above floor. During our resurvey we found that the stalagmite is loose and may shift with time
D726	1219.19	+ on wall	Chiseled + on northeast wall of Bomb Shelter, 1.5 ft above floor at point where dirt floor begins to slope into the crawl to the door-to-door route. In bed DL9 under overhanging ledge.
D62	1214.74	top of raft cone	Topmost part of highest (and largest) raft cone (partly broken) in the group of cones just below the climb over breakdown about 250 ft northeast of Bomb Shelter on door-to-door route.
D71	1214.05	dot on breakdown	Carbide dot on small slab of rock on eastern corner of bend where narrow fissure branches to left from door- to-door route:
·			BREAK- KLIST

D370 1218.05 + on wall

Penciled + on northwest wall of doorto-door route, above and just beyond crawlway opening to route leading to drop-down to stream. (Note: repeti-

i.
tion of last digits in + elevations on door-to-door route is a result of datum-line survey with hand level, which changes datum in even numbers of feet.)

Top of bed DT 4, at base of first significant shale in Dubuque Formation. Bed DT4 has iron oxide stains and pockets near top caused by weathering of pyrite.

D387 1218.71

top of stalagmite

top of pyritic bed

Top of flagged stalagmite on breakdown block on northeast slope of breakdown pile in door-to-door route:

flagged survey station Old survey station marked by flagging on breakdown slope near bottom of junction at Big Fork. Top of flat slab of breakdown in floor at entrance to Wind Tunnel:

Top of highest stalagmite on crest of thin blade of breakdown in door-todoor route:

Upper tip of old survey station marked with flagging tape at junction with Little Fork, 2.3 ft below ceiling on high ledge along eastern wall of junction.

H840 1209.95

D402 1218.15

D438 1212.35

flagging tape

H833 1224.75 top of breakdown

D434 1209.63 top of stalagmite D581 1213.23 top of stalagmite Top of small stalagmite at level of BP1 beneath white soda straws in door-to-door route:

Horizontal pencil line on northeast wall at junction with Incline, 3 ft below ceiling:

Penciled + on ledge immediately below "CAMP" sign in Sand Camp, 2 ft below ceiling.

Top of 9" stalagmite at edge of fissure in floor, 14 ft northeast of iron oxide drapery northeast of Sand Camp.

Penciled + on southeast wall at SW junction with Cutoff, 1.5 ft below ceiling and 4.8 ft above edge of floor fissure, in fossil-rich limestone.

Top of larger of two stalagmites on west side of passage northeast of Cutoff, southwest of Boofer Pool. They are loose, apparently having been fractured by natural weathering, but are still in place.

Top of stalagmite in southern corner of bend next to most impressive array of stalactites and stalagmites, 6.5 ft below ceiling:

FLOOR TRENCH

Top of stalagmite in fissure indentation in wall of floor slot at drop to Flim Flam Creek; it is the lower of two 2" stalagmites 1 ft below the

+ on wall

+ on wall

top of stalagmite

top of stalagmite

D598 1216.05 pencil line on wall

D619 1213.02 top of stalagmite

D612 1208.51 top of stalagmite

D672 1215.85

D676 1213.73

D634 1216.57

D622 1213.46

ledge overlooking the slot, and 2.5 ft northeast of slot that drops to stream:

MAP LIM FLAM CK. FLOOR SLOT BAR

Top of stalagmite on northwest edge of fissure in floor, across from dripstone column, about 20 ft southwest of Bar:

Top of highest stalagmite in cluster on northwest side of passage 11 ft northeast of Bar. There is a little nubbin at the top where a stalactitic column once touched it but has been broken away:

FLOOR DIST

Bottom tip of popcorn in a small cluster at junction of Angel Loop with passage to the Bar:

Chiseled + on wall 2 ft above floor at northern edge of junction between Angel Loop and passage to the Bar (see above).

D72 1211.57

top of stalagmite

D787 1211.41

1213.76

D783 1211.41

D77

.41 top of

top of stalagmite

bottom tip of popcorn

+ on wall

70

Chiseled + on wall 9" above floor at joint intersection southwest of radon monitor in Angel Loop, 6" northeast of dropoff into fissure and 6" from the angle of rock at the joint intersection:

Chiseled + on wall at cross fissure along joint in Angel Loop, 1 ft above floor in fissure indentation in south wall of passage:

71

Top of highest stalagmite beneath Carrot Sticks in Angel Loop. Bottom of prow-shaped rock pendant projecting downward into passage at northeastern end of Angel Loop, about 20 ft from eastern junction with 5th Ave., 6.6 ft above floor:

Chiseled + in north wall of 5th Ave. at eastern junction with Angel Loop, 1 ft above trail, on smooth rock face 2 ft west of small dead-end joint fissure.

Uppermost tip of rock-chip scar above entrance to Fat Man's Misery:

D779 1210.76 + on wall

D187 1213.32 top of stalagmite

D111 1216.67 tip of rock pendant

D731 1213.17 + on wall

D104 1227.15 top of rock chip

· · · ·

D88	1225.47	tip of breakdown	Upper tip of pointed breakdown slab along south wall of 5th Ave., 38 feet from entrance to passage to Smoking Chamber, 2.5 ft above adjacent floor: CROSS SECTION LOOKING EAST DEE LEVEL OF BREAKDOWN FLOOR FARTWER EAST
D797	1224.28	+ on wall	Chiseled + on wall in bed DL2, 2.5 ft above floor and 2 ft west of rock barrier in entrance to western exten- sion of 5th Ave.:
91	1219.71	pool level	Threshold of overflow slot in drip
D99	1231.83	upper tip of chip scar	pool in Smoking Chamber. Top of scar where rock chip has been broken away, directly over entrance to crawlway in northeast wall of Base Camp, which leads to Enigma Pit, etc., about 2.4 ft above floor:
			WALL OF BASE CAMP
			CANUL FROM CANUL FROM ANSC CAMP CROSS SECTION OF CRAVL ENTRAVICE
D737	1212.25	+ on breakdown	Chiseled + on large breakdown slab occupying most of the floor along the north side of 5th Ave., 6" above trail, at west end of slab:
			MAP: DTST BREAK- TO MI DTST DOWN DOWN
D743	1219.69	+ on wall	Chiseled + in Stewartville Formation, 4.6 ft above floor on north side of 5th Ave., at contact with artificial stone wall of ramp from 4th Ave., at
D118	1216.83	bottom of elbow	Bottom of elbow at lower end of ramp handrail at eastern junction between 5th Ave. and 4th Ave., on north side
		•	of 5th Ave.

(Carterio

Chiseled + on wall at southwest corner of Dome Room, above middle step leading to Diamond Caverns, 2 ft above middle step, 2" above BP2, and 2 ft from southwestern corner of intersection at Dome Room:

Chiseled + on wall 6" above floor of Diamond Caverns, on south wall across from joint fissure in wall:

> MAP: DEOL TO DOME TO BLUE LAKE

Chiseled + on wall on northwest corner of entry to Diamond Caverns from Blue Lake area, 2.5 ft above floor at base of steps in 4th Ave.:

Top of railing at eastern end of Blue Lake, at southeastern elbow, 3.1 ft above floor:

Chiseled + on south wall of 4th Ave., 11 ft to east of bridge over Blue Lake, 10" above floor on fresh surface of shaly limestone, 2 ft east of jog in wall:

.

+ on wall

D802 1230.33

D806 1226.70 + on wall

D810 1231.76 + on wall

D205 1239.72 rail top

D813 1237.49 + on wall

D203 1240.10

D818 1225.06

top of stalagmite

+ on wall

Top of small stalagmite on large flowstone mound west of Blue Lake, 4.6 ft above trail, on opposite side of flowstone from Mushroom (Cross):

chiseled + in south wall of 4th Ave. above breakdown pile near low point of "valley" between Hills of Rome, 2.5 ft above trail:

Chiseled + near east tip of large breakdown slab on south side of trail above top step on western end of "valley" between Hills of Rome, 3.5 ft above trail:

Chiseled + on iron-oxide-stained rock face beneath overhanging ledge on southeastern corner of junction between 4th Ave. and Fat Man's Misery, 1.5 ft above top step leading from Fat Man's Misery:

Chiseled + on northeasternmost slab of breakdown in 17-Layer Rock, 1.4 ft above trail, on northwestern edge of slab:

D822 1238.93 + on breakdown

D826 1228.94 + on wall

D746 1216.22

+ on breakdown

75

D752 1213.81 + on wall

carbide dot on wall

Chiseled + on north wall of 5th Ave., 1 ft west of junction with fissure from Mystery II entrance, 9" above floor:

MAP: DT52 DT52 TO GARDEN OF GODS

Apparently an old survey station, at junction of 5th Ave. and fissure from Mystery II entrance; 3.2 ft above trail, on northeast corner of junction:

- D124 CARBIDE DOTS ON WALL

Top of stubby yellow stalagmite on ledge on southwest wall of route to Garden of Gods, 3.45 ft above trail. Chiseled + on triangular face on east end of tilted undercut breakdown block, along north wall of route to Garden of Gods, 1 ft above lowest point on block and 2 ft above trail. Breakdown block is flared at bottom and rests on another larger block partly immersed in sediment fill. Topmost part of irregular breakdown block along S wall of route to Garden of Gods, just south of large semiburied slabs called "Texas Toast":

Chiseled + on south end of eastern slab of "Texas Toast" -- thin breakdown slabs partly immersed in sediment:

Chiseled + on southwest corner of fissure intersection south of Coon

D131 1214.89 top of stalagmite D843 1210.99 + on wall

D124 1216.53

D136 1213.32 top of breakdown

+ on breakdown

D846 1209.89

D849 1209.15 + on wall

Lake in route to Garden of Gods, 3.5 ft above edge of dropoff into lower fissure, just above overhang:

Chiseled + on north wall, 8" above floor on projecting rock fin at beginning of Garden of Gods loop:

Top of large curved stalagmite beneath drip on breakdown slab in Garden of Gods, 3.4 ft above floor.

Top of elbow in railing at top of stairs leading down from Garden of Gods.

Floor of entrance building at Mystery II entrance, at head of stairs.

Topmost point in post for "Cave Tours" sign outside ticket office at Mystery II.

DNR bench mark BM15 (1272.45 ft according to DNR survey), 1 ft above ground.

top of southern post of gate at entrance of Mystery II access road.

Top of threaded section of uppermost bolt on back side of YIELD sign at junction between north-south road leading to Mystery II (and Grabau Quarry) and east-west road near junction with Rte. 5.

Top of threaded section of 3rd bolt upward (2nd bolt downward) on back side of "left curve" sign on south side of Rte. 5 east of junction with Mystery II access road, 875 ft east of D932.

Small piece of flagging tape between blocks in low cairn in middle of floor in western part of 5th Ave., 1 ft above floor:

TRAIL BLOCKS

D146 1216.82 top of railing D233 1250.49 concrete floor D240 1264.61 top of signpost D244 1272.60 nail in power pole D898 1271.57 top of post D932 1324.12 top of bolt on sign

top of stalagmite

D946 1330.65 top of bolt on sign

D157 1221.13 flagging tape

D851 1208.66 + on wall

D145 1218.09

- D178 1222.80 radio location
- D167 1220.10 top of stalagmite
- D174 1225.07 top of stalagmite
- D175 1224.39 tip of stalactite

top of stalagmite

dot on breakdown

tip of soda straw

Top of nail in flagging tape at radio transmitting station.

Highest point on compound stalagmite 1.5 ft south of iron oxide powder on floor of western extension of 5th Ave.

Top of small stalagmite on ledge on east side of breakdown at western end of 5th Ave.

Tip of stalactite directly below D174 stalagmite:

In Eureka Ave., top of small orange stalagmite 0.8 ft above floor in middle of breakdown block across entrance to passage to Rotunda. Breakdown also has an upright block on it to mark junction.

carbide dot on top of 2-ft-square block in Eureka Ave. at entrance to Discovery Route:

Top of rimstone in westernmost pool of Lily Pad Lake Topmost point of cairn labeled "NO

TOUCH" in Eureka Ave. at entrance to side passage to south:

Tip of 1" soda straw on northeast corner of junction of Eureka Ave. with route to First Triangle Room, 3.7 ft above floor.

D8

D9

D13

1204.80

1211.88

1212.09

H27 1204.27 Lily Pad Lake

D12 1212.76 top of cairn

D19	1224.72	tip of stalactite	Tip of 1-ft-long corroded stalactite (with a slightly winged profile) 15 ft before western breakdown termina-
H17	1192.57	tip of breakdown block	Topmost corner of triangular break-
D31	1206.44	radio location	Head of nail holding flagging at radio location (labeled "survey point") at entrance to the Finger
D906	1227.51	dot on wall	Junction between 4th Ave. West and Under 4th Ave.; middle of old carbide dot in center of circle on south
Н923	1225.21	former water level	Top of thin light-gray band repre- senting former water level, on south
D929	1225.73	+ on wall	Chiseled + on north wall of 4th Ave. West next to cross-shaped cairn at beginning of Yellow Flow, above where flowstone cascade begins to drop below floor level of main passage;
5040	1001 00		1.3 ft below flat ceiling near base of bed DL12, below mud-man sculpture.
D943	1231.26	stalagmite tip	brown center, located between break-
			down blocks at floor level:
			down blocks at floor level:
			down blocks at floor level: $ \begin{array}{c} \bigcirc & & \\ & \bigcirc & \\ & 0 \\ &$
D947	1229.91	+ on wall	down blocks at floor level: $ \begin{array}{c} $
D947 D954	1229.91 1230.54	+ on wall stalagmite tip	down blocks at floor level: $\begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ $
D947 D954	1229.91 1230.54	+ on wall stalagmite tip	down blocks at floor level: $\int_{O} BREAKDOWN BLOCKS$ $\int_{O} \frac{1}{2} srugBy stalA6MINES$ Penciled + on north wall above entrance to passage leading north to Enigma Pit, above small breakdown block that partly blocks opening; in middle of bed DL5, 1.0 ft above top of breakdown block. Top of blob-shaped stalagmite on upper tip of long breakdown block along north wall of slope into Enigma Pit: $\int_{V=0}^{0} \frac{1}{2} e_{NIGMA PIT}$

The carlo

78

D962 1216.46 tip of arrow

carbide dot

dot on ceiling

D978 1209.21

D997 1213.21

Tip of OUT arrow on south wall:

Center of carbide dot on fin of rock above register jar at juction between Main Street and Labyrinth:

Carbide dot on flat ceiling, just after slight rise in ceiling level, above small cairn of breakdown blocks next to stream, at junction between Lily Pad Route and Helictite Route.

ADDITIONAL POINTS OF INTEREST:

Top of new well casing at house at Mystery I (cap removed): 1258.48 ft.

Top of old well casing at house at Mystery I (cap removed): 1255.21 ft.

Top of PVC stilling well on west bank of South Branch of Root River (installed for LCMR hydrologic study): 1230.86 ft.

Top of PVC stilling well at Flim Flam Creek, Mystery II (installed for LCMR hydrologic study): 1194.37 ft.

Dry bed of river at road crossing below Grabau Quarry: 1178.5 ft.

Floor of Grabau Quarry: 1269 - 1270 ft.

APPENDIX 2 -- Leveling Data

Survey coordinates from the geologic mapping of Mystery Cave are shown on the following pages. They are listed in the order in which they are encountered in traveling from Mystery I to Mystery II and III, with an occasional back-track into side passages. Semi-permanent bench marks are listed in Appendix 1, with locations shown on the map in Figure 1. Measurements to stratigraphic and geomorphic features are listed in the second section (which also includes bench-mark data). Station locations can be determined from the X-Y scales on the base map. Vertical coordinates were obtained with a tripod-mounted surveyor's level in large passages and with a hand level in small (or less accessible) passages.

Surveys with the tripod-mounted level consisted of alternating foresights and backsights between the instrument and a metric survey rod, with readings to the nearest 0.1 mm. Stadia readings on the rod were used to determine distance between stations, and azimuth was measured with a handheld SUUNTO compass. Measurements to features in the cave were made from the rod with a string level. Surveys with the hand level were made by projecting a horizontal line (datum line) through the cave from one rod to another, alternating foresights and backsights and measuring up or down to significant points from the datum line. Distances were measured with a fibreglass tape and azimuths with a hand-held SUNNTO compass. The datum line was shifted up or down an even number of feet wherever the configuration of the passage prevented the original line from being continued. Both leveling instruments were frequently calibrated with closed loops on the surface, and the level survey readings were corrected for calibration error.

The overall base station for the survey data is the 1989 DNR bench mark BM10, which is the head of a spike driven into the base of a triple basswood tree south of the ticket office outside Mystery I. The DNR topographic map lists the altitude of this station as 1230.37 feet above sea level. This is the first item (D1) on the list of survey data. Coordinates are given in FEET relative to this base station.

All figures on the following pages are in FEET. Columns are as follows:

STA = survey station in level survey. D = datum (semi-permanent bench mark). T = station at tripodmounted level. R = station at bottom of survey rod. S = same as R, except used for side shots not in sequence with the main level line. H = hand-level station (only significant ones are listed).

FROM = station from which the station listed in the first column was measured.

EAST = feet east of base station (BM10 = D1). Negative values indicate distance west of base station.

NORTH = feet north of base station (negative values indicate distance south of base station).

VERTICAL = elevation of station in feet above sea level (BM10 = 1230.37 feet used as datum). This figure is the floor or ground elevation for R and S stations. For D stations it is the exact elevation of the point. For T and H stations it is the elevation of the instrument (roughly 3.5 feet above the floor for T stations).

Elevations of various features are shown in the last two columns, as measured at or near the station. All are shown to the nearest 0.01 foot, although some could not be reliably measured to that degree of accuracy (for example, irregular bedding planes). Abbreviations of features are as follows: BM = bench mark; CEIL (or C) = passage ceiling; FLOOR (or F) = passage floor (where not otherwise indicated, the floor level coincides with R and S stations and is about 3.5 feet below T stations); BP = bedding plane; LS = limestone; SH = shale; SM = stalagmite; STAL (or ST) = stalactite; RST = rimstone; SHELFST = shelfstone; POPC = popcorn; PEND = pendant; SED = sediment; S+G = sand and gravel; ELBOW = elbow in railing pipe; DOT = carbide dot (from a previous survey?); N = north; E = east; S = south; W = west; WL = water level.

Positions of rock layers or bedding planes are noted in code as shown on the stratigraphic column. S = Stewartville Formation; D = Dubuque Formation; M = Maquoketa Formation. Contacts between beds are indicated in the following manner: D/S = Dubuque/Stewartville contact, etc. SX1 - SX 3 = granular crystalline beds near top of Stewartville. <math>DT1 - DT4 = transitional beds at base of Dubuque, with little or no shale between them. BP1 - BP3 = major bedding planes near base of Dubuque. DL1 - DL29 = limestone beds in Dubuque sandwiched between thin shale beds. DS1-DS30 = thin shale beds in the Dubuque, separated by limestone beds. Nomenclature for these thin limestone and shale beds may seem awkward at first, but the advantage is that in the field it is possible to count quickly upward or downward from a known bed, using only the projecting limestones or the recessive shales, without having to keep track of every bed.

STA	FROM	EAST	NORTH	VERTICAL		FEET	
Dl		0.0	0.0	1230.37	BM10=NA	IL 1230.37	
Rl	Dl	0.0	0.0	1230.37			
Tl	Rl	6.8	15.6	1233.24			
R2	Tl	-52.4	4.1	1229.24	FLOODPL	AIN 1229.24	
т3	R2	-151.1	22.4	1233.09			
R4	тЗ	-165.3	-24.0	1232.64	FLOODPL	AIN 1232.64	•
т5	R4	-243.4	-25.4	1238.16	•		
R6	т5	-268.5	-28.4	1236.61	IRREG S	URF 1236.61	
т7	Rl	7.6	17.0	1233.11			
S8	т7	68.6	5	1224.81	RIVER L	EV 1224.81	
S9	т7	115.4	1.8	1230.47	PATH	1230.47	
R10	т7	46.4	41.3	1228.21			
T11	R10	27.7	116.4	1233.42	FLOODPL	AIN 1233.42	
R12	T11	7.9	241.5	1227.73			
т13	R12	-28.7	295.8	1231.45	FLOODPL	AIN 1231.45	
R14	T13	-63.1	350.7	1226.85			
T15	R14	-103.9	417.4	1230.88			
R16	т15	-141.3	497.7	1226.34	FLOODPL	AIN 1226.34	
T17	R16	-165.2	568.9	1229.83			
R18	T17	-184.1	657.8	1225.17			
т19	R18	-167.2	690.8	1228.81			
R20	T19	-146.1	699.4	1222.31	WL AT F	ORD 1222.31	
T21	S 9	129.3	-9.8	1231.96			
R22	T21	137.5	-11.1	1226.12			
т23	R22	165.1	-10.2	1226.12			
R24	т23	193.9	-10.2	1220.54	CEIL	1227.75	
					FLOOR	1220.54	
					DS18/DL	17 1226.28	
					DL16/DS	16 1225.29	
		•			DS16/DL	15 1224.96	
					DL15/DS	15 1223.92	
					DS15/DL	14 1223.64	
					DL14/DS	14 1223.28	
					DS14/DL	13 1223.03	
					DL13/DS	13 1221.95	
					DS13/DL	12 1221.36	
т25	R24	217.3	-11.8	1221.49			
R26	т25	255.5	-15.8	1215.68			
D2	R26	255.5	-15.8	1218.56	SM TOP	1218.56	
т27	R26	326.1	-30.2	1220.61			
R28	т27	360.6	-34.7	1215.99	DS13/DL	12 1221.9 6	
					CEIL	1225.83	
D3	R28	360.6	-34.7	1218.54	RAIL TO	P 1218.54	
т29	R28	401.7	-51.3	1216.52	POOL LE	VEL 1204.25	
R30	Т29	444.3	-65.2	1213.47		•	
R31	D3	360.6	-34.7	1215.13			
т32	R31	400.8	-51.0	1215.96			
R33	т32	437.5	-62.9	1213.41			
D4	R33	437.5 .	-62.9	1216.93	RAIL TO	P 1216.93	
т34	R33	470.4	-61.2	1219.95			
R35	т34	500.0	-61.7	1217.47	DS13/DL	12 1222.79	

ť

(

Ĺ

					CEIL	1225.35
т36	R35	570.5	-80.6	1221.36		
R37	т36	597.0	-88.2	1217.07	C=DL14/S14	1224.13
					FLOOR	1224.13
					SHELFST	1220.62
D37	R37	597.0	-88.2	1220.87	SM TOP	1220.87
T38	R37	649.1	-90.0	1221.37		
R39	T38	695.8	-101.7	1216.62	CEIL	1224.16
					SED TOP	1219.77
т40	R39	749.3	-118.0	1220.89		
R41	т40	805.4	-131.5	1217.00		
π42	R41	784.6	-140.3	1217.72		
543	Ͳ42	790.8	-140.0	1213.82	FOLIA TOP	1219.33
0.0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			FOLIA BOT	1219.17
					DL10/DS10	1218.28
					DS10/DI9	1217.89
544	ጥ4 2	765.8	-160.5	1211.77		1214.59
DII	142	,00.0	10010		WATER LEV	1214.46
•					FOLTA TOP	1219.28
					CELL	1219.20
D45	m/1 0	805 5	-130 1	1217 00	CONE TOP	1219.32
K45	142	803.5	-130.1	121/.00	CUNE IOF	1219.30
m 4 6	D/5	946 9	-130 2	1220 08	SHELFST	1210.94
140 D47	R45 mAC	040.0	-150.2	1220.00	CONF TOP	1217 19
R47	140	922.9	-152.5	1210.97	OLD WI	1217.49
					CELL WE	1210.00
						1220.07
m 40	D 4 7	020 7	160 6	1210 66	DLII/DSII	1220.07
T48	R47	938.7	-160.6	1210.00	CRII	1000 00
R49	148	9/4./	-104.4	1213.43	CELL CELL	1220.03
	D 40	1017 4	122.0	1210 07	OLD MT	1210.32
T50	R49	1017.4	-133.9	1218.07	CHII	1000 05
RST	150	1028./	-105.0	1215.08	CEIL	1220.95
					DE10/D510	1220.95
					229	1210.90
	263	1100 7	75 6	1010 00	DS8	1217.03
152	R51	1100.7	-/5.0	1218.29	0811	1005 04
R53	T52	1106.2	-86.7	121/./4		1225.94
		1100.0	06 7	1010 15		1223.94
D53	R53	1106.2	-86./	1219.15	SM TOP	1219.15
T54	R53	1100.1	-//.0	121/.8/	0777	1010 40
R55	т54	1100.5	-/2.1	1214.79	CEIL	1218.40
				1015 10	FLOOR	1214.13
T56	R55	1104.1	-52.7	1215.12	DL6/DS6	1215.//
					CEIL	1218.73
					LOW CEIL	1215.18
R57	т56	1125.7	-52.7	1213.69	CEIL	1219.85
						1219.30
					DSTO/DF3	TSTA 00
					DL9/DS9	TST8.08
					DS9/DL8	121/./2
					DTA/D2A	1015 30 TST0.20
			~ * *	1016 -	DS8/DL7	1212.12
T58	R57	1166.9	-24.4	1216.71		1010 46
R59	т58	1203.5	-5.3	1215.18	CEIL	1218.46
					DL9/DS9	1218.46

.

y in the physical and

i

1

						FLOOR	1212.52	
	т60	R59	1197.5	8.9	1215.82			
	R61	T60	1215.9	26.0	1213.37	CEIL	1218,92	
						DI-9/DS9	1218.92	
						DI.9/DS9	1217 82	
						DL.7/DS7	1216 95	
							1216.55	
	mco	DC1	1270 0	16 5	1015 01	CONE MOR	1210.50	
	T02	ROI mcc	1270.0	10.5	1213.31	CONE TOP	1014 74	
	D62	T62	1270.0	10.5	1214.74		1214.74	
	ROJ	T62	12/4.0	42.2	1212.01	021/029	1219.00	
	164	R63	12/4.1	49.0	1219.08		1225.97	
			1050 0	-1 0	1017 44		1225.97	
	R65	Т64	1258.2	51.0	1217.44		1224.85	
						DL14/DS14	1225.90	
						CEIL	1225.90	
						DL12/DS12	1224.39	
						DS12/DL11	1223.70	
						DL11/DS11	1222.85	
						DS11/DL10	1221.90	
	т66	R65	1222.6	57.2	1222.51			
	R67	т66	1212.2	64.8	1217.91	CEIL	1225.78	
						DL14/DS14	1225.78	
						DS13/DL12	1224.96	
						DL12/DS12	1224.27	
						DS12/DL11	1223.61	
						DL11/DS11	1222.83	
						DS11/DL10	1221.65	
						DL10/DS10	1220.50	
						DS10/DL9	1220.27	
						DS9	1219.35	
	T68	R67	1237.2	89.4	1218.57	-		
	269 269	T68	1257.9	100.0	1215.46	CEIL	1219.36	
	NO J	100	123703	20000	1010010		1219.36	
	m7 0	P69	1211 4	109.8	1216.95			
	170 171	m70	1103 6	116 0	1211 08	CEIL	1219.94	
	K/L	170	1193.0		1211.00		1219.94	
						FLOOP	1209.61	
	5.93	571	1102 6	116 0	1014 05	POT ON PD	1214 05	
		R/I	1193.6	110.0	1214.05	DOI ON BD	1214.05	
	R245	DI	0.0	0.0	1229.07			
	T246	R245	9.0	13.9	1233.28			
	R247	T246	116.4	-2.1	1230.14			
	T248	R247	129.1	-15.7	1232.10	5710 (5210	1000 50	
	S249	Т248	142.8	-21.4	1227.26	DL19/DS19	1229.58	
						DS19/DL18	1229.10	
						DL18/DS18	1228.49	
						DS18/DL17	1228.17	
· .						DS18	1227.39	
-						DL17/DS17	1225.19	
						DS22/DL21	1230.55	
						DL22/DS22	1231.07	
						DS23/DL22	1231.66	
						DL23/DS23	1231.87	
			•	,		DS24/DL23	1233.04	
						DL24/DS24	1233.92	
						DS25/DL24	1234.35	

Ć

(

						DL25/DS25 SH BREAK SH BREAK SH TOP	1234.68 1235.20 1235.93 1236.48
R250	T248	119.4	1.8	1231.99		DL27 M/D	1237.81 1241.11
R320	D2	255.5	-15.8	1215.48			
Т321	R320	256.4	-2.2	1215.97			
R322	Т321	262.7	4.8	1209.86	•		,
Т323	R322	327.0	60.7	1214.93			
R324	T323	377.0	109.0	1211.34		DS10 DS9 CEIL LS/SH	1216.53 1215.41 1222.66 1222.66
Т325	R324	402.2	105.4	1213.17			
R326	Т325	402.2	111.3	1209.87			
Т327	R326	402.2	123.7	1210.66		D/S Stream	1202.26 1180.76
R328	т327	402.2	123.7	1202.63			
D328	R328	402.2	123.7	1210.46		SM TOP	1210.46
R329	D2	255.5	-15.8	1215.53			
т330	R329	301.3	-23.9	1218.95			
R331	т330	329.1	-23.4	1210.74		SP CEIL	1215.93
			<i>.</i> -			DL9/DS9	1215.93
T332	R331	352.6	-4.1	1214.36		D. 21.0 /DT.0	1018 08
R333	T332	378.3	3.8	1209.46		DSI0/DL9	1217.07
						CEIL	1222.81
						DLI4/DSI4	1222.81
						NEXT CELL	1214.25
m > > /	222	A17 0	20 1	1011 00	,	150/120	1214.25
T334 D225	R333 m224	41/02	20.1	1206 19		DG1/DTA	1208 84
N332	1334	435.7	34 3	1200.19			1200.04
m236	R335	455.7	19 3 19 3	1209.34		INTO IOF	1209.34
1330	M336	508 4	40.1	1205.00		רצת / וצת	1209.13
K337	1550	500.4		1200.10		CETI.	1213.89
							1213.89
m330	D337	552 1	65.3	1212.60		017007	1210107
B330 1220	TT 38	583.1	85.5	1209.97		DL7/DS7	1214.40
1000	1990	00011				CEIL	1217.35
						DL10/DS10	1217.35
т340	R339	610.3	107.9	1213.75		,	
R341	т340	634.1	107.0	1208.92	•	DL7/DS7	1214.43
						CEIL	1216.20
						DL9/DS9	1216.20
						FISSURE C	1218.76
т342	R341	661.8	128.7	1212.19			
S343	т342	669.8	148.4	1206.89		DS1/DT4	1209.78
						DS4/DL3	1212.Ò1
						DL4/DS4	1212.14
R344	т342	670.6	154.1	1211.83		DL10/DS10	1218.13
						NAUTILUS	1218.39
т345	R344	673.7 ·	157.7	1217.80			
R346	т345	678.4	156.7	1217.74			
т347	R346	683.0	162.8	1222.37			

CONTRACTOR STRATES

(

i (

S348	т347	678.5	173.8	1216.72		
D348	S348	678.5	173.8	1222.96	STAL TIP	1222.96
s349	т347	687.2	167.9	1217.98	CEIL DS21	1229.53 1229.53
R350	D3	360.6	-34.7	1215.16		
T351	R350	375.6	-44.5	1218.62		
R352	T351	369.9	-47.2	1209.65		
T353	R352	325.9	-81.0	1211.76		
R354	T353	294.0	-106.8	1206.34	DS1/DT4	1208.99
					CEIL DL6/DS6	1213.09 1213.09
т355	R354	279.7	-107.6	1211.32		
R356	т355	233.2	-142.6	1211.24	DS10/DL9	1216.79
т357	R356	229.3	-146.3	1220.58		
R358	T 357	226.4	-150.9	1220.41		
т359	R358	210.9	-155.0	1230.12		
S360	т359	202.8	-159.3	1225.53	RADIO LOC	1226.07
R361	т359	219.9	-164.9	1229.97	DS24/DL23	1234.56
т362	R361	187.0	-163.7	1238.05		
R363	т362	181.0	-170.6	1236.76	M/D	1242.18
					DL27	1239.13
т364	R363	177.7	-157.9	1243.19		
R365	т364	174.3	-163.9	1243.10	BD TOP	1259.51
	2001	27.000		2210020	HIGHEST C	1249.66
H366	ודם	1175.0	110.0	1212.05		1213.35
	071	11/5.0	110.0	1212.00	CEII.	1216.35
					DS6	1216 35
						1211 65
						1211.05
					BF 5	1209.95
11267	571	1200 4	125 /	1010 05	CEIL	1200.05
H307	D/1	1209.4	132.4	1210.05	ELOOP	1215 05
						1219.05
						1210.05
** 2 6 0		1244 0	161 0	1010 05	CEIL	1222.02
H368	H367	1244.0	101.9	1218.05	CEIL	1222.35
			. •		DS12	1222.35
					FLOOR	1216.05
					DL10/DS10	1219.95
					DL9/DS9	1218.65
H369	H368	1250.6	181.2	1218.05	CEIL	1222.05
					FLOOR	1215.65
					DL10/DS10	1220.00
		· ·			DL9/DS9	1218.75
D370	н369	1300.8	217.6	1218.05	+ ON WALL	1218.05
H370	D370	1300.8	217.6	1218.05	CEIL	1220.05
					DL10/DS10	1220.05
			*		FLOOR	1214.45
					DL9/DS9	1218.80
					SP CEIL	1215.45
					DL6/DS6	1215.45
H371	H370	1353.9	259.9	1218.05	CEIL	1220.20
					DL10/DS10	1220.20
					DS10/DL9	1219.70
			•		DL9/DS9	1219.05
					F (BD)	1211.05

ł

Н372	H371	1402.2	290.6	1217.05	CEIL	1218.15
					DL7/DS7	1217.25
4373	4372	1399 2	307.7	1217 05	CELL	1222 55
1375	11572	1393.2	307.7	1217.05		1210 05
						1219.95
					DT3/D23	1218.95
					DT8/D28	1218.05
					FLOOR	1214.45
H374	H373	1341.8	311.2	1217.05	CEIL	1218.70
					DL9/DS9	1218.70
					DL8/DS8	1217.50
					DS8/DL7	1217.10
					FLOOR	1214.55
Н375	Н374	1366.6	332.0	1217,05	CEIL	1219.35
					DL10/DS10	1219.35
					DL9/DS9	1218.25
					FLOOR	1214.55
н376	Н375	1392.4	334.2	1217.05	CEIL .	1218.85
					DL9/DS9	1218.35
,					FLOOR	1214.05
Н377	Н376	1431.2	360.4	1217.05	CEIL	1219.65
					DL10/DS10	1219.65
					DL9/DS9	1218.60
					FLOOR	1215.35
Н378	H377	1461.5	383.2	1217.05	CEIL	1222.25
			•		DL12/DS12	1222.25
					DL9/DS9	1218.50
					FLOOR	1213.65
Н379	Н378	1432.6	391.8	1217.05	CEIL	1221.05
				•	DS10/DL9	1219.05
					DL9/DS9	1218.20
					FLOOR	1214.05
					DL6/DS6	1215.35
н380	Н379	1445.6	413.0	1215.05	CEIL	1216.40
					DL7/DS7	1216.40
					F (CLAY)	1214.85
Н381	н380	1445.6	413.0	1217.05	DL9/DS9	1218.25
н382	H381	1452.7	417.2	1217.05	CEIL	1219.45
					DL10/DS10	1219.45
					F (BD)	1216.85
н383	Н382	1462.1	419.8	1218.05	CEIL	1219.65
					DL10/DS10	1219.65
					FLOOR	1217.65
н384	н383	1464.4	424.8	1221.05	CEIL	1225.05
					DL16/DS16	1225.05
					FLOOR	1220.75
н386	н384	1472.0	434.4	1222.05	Fe OXIDE	1223.45
					Fe OXIDE	1222.45
H387	н386	1473.9	435.4	1220.05		•
D387	H387	1473.9	435.4	1218.71	SM TOP	1218.71
Н388	Н387	1478.1	437.6	1218.05	CEIL	1220.10
					DL10/DS10	1220.10
		-			DL9/DS9	1218.85
		•			FLOOR	1217.75
н389	н388	1526.8	478.4	1218.05	CEIL	1219.05

and the second second

					DL9/DS9	1219.05
					FLOOR	1216.25
н390	н389	1541.1	493.5	1218.05	CEIL	1221.55
					DL10/DS10	1220.25
					DL9/DS9	1218.90
					FLOOR	1216.55
н391	н390	1555.7	498.8	1218.05	CEIL	1218.90
					DL9/DS9	1218.90
					FLOOR	1216.05
н392	Н391	1578.8	494.5	1217.05	CEIL	1218.35
					DL8/DS8	1218.35
					FLOOR	1215.75
н393	н392	1595.8	510.7	1217.05	CEIL	1220.25
					DL10/DS10	1220.25
					DL8/DS8	1218.35
					FLOOR	1216.45
н394	н393	1616.3	522.5	1218.05	CEIL	1220.45
					DL10/DS10	1220.45
					FLOOR	1216.95
H395	н394	1694.1	585.5	1218.05	CEIL	1220.65
					DL10/DS10	1220.65
					DL9/DS9	1219.25
					FLOOR	1214.55
H396	н395	1747.2	631.7	1216.05	CEIL	1218.55
					DL9/DS9	1218.55
					DL7/DS7	1216.90
					FLOOR	1214.05
H397	н396	1779.9	625.6	1216.05	CEIL	1218.05
1007					DL8/DS8	1218.05
					DL7/DS7	1217.01
					DS6/DL5	1215.60
					FLOOR	1214.25
#398	H397	1798.3	644.6	1215.05	CEIL	1215.85
					DS6/DL5	1215.40
					FLOOR	1213.65
н399	н398	1812.9	659.7	1215.05	CEIL	1216.75
1.000					DL7/DS7	1216.75
					F (BD)	1214.45
н400	н399	1816.3	668.0	1216.05	DL7/DS7	1216.90
H401	H400	1823.7	673.0	1217.05	DL10/S10 S	1219.80
					DL10/S10 N	1218.75
					DL7/DS7	1216.75
					F (BD)	1216.05
H402	H401	1822.4	680.9	1221.05	,	
D402	H402	1822.4	680.9	1218.15	FLAGGING	1218.15
HH402	H401	1839.9	676.4	1217.05	CEIL	1217.95
		200000			DL9/DS9	1217.95
					DL7/DS7	1216.65
					DL6/DS6	1215.65
					F (BD)	1214.55
H403	HH402	1853.0	678.4	1215.05	CEIL	1216.05
11-03					DL7/DS7	1216.05
					FLOOR	1213.55
HA04	H403	1873.5	674.0	1215.05	CEIL	1216.60
11404	11705		07-200	2220100	DI.7/DS7	1216.60

					FLOOR	1214.55
H405	н404	1918.3	672.4	1215.05	CEIL	1217.30
					DL7/DS7	1217.30
					DS5/DL4	1215.15
					F (BD)	1213.05
н406	н405	1934.7	672.7	1215.05	CEIL	1215.55
					DL5/DS5	1215.55
					DS5/DL4	1215.25
					DL3/DS3	1214.85
H407	н406	1973.1	670.0	1215.05	CEIL	1216.20
				·	DL4/DS4	1216.20
					DS3/DL2	1215.55
					FLOOR	1213.05
H408	H407	2020.6	669.2	1215.05	CEIL	1215.75
1100					DL3/DS3	1215.75
					DS1/DT4	1214.05
					F (BD)	1209.75
H109	H408	2032.7	668.8	1211.05	CEIL	1213.05
1409	11400	2052.7	000.0	1211.00	BP3	1212.45
					BP2	1209.65
					FLOOR	1207.55
H410	W400	2041 4	666 8	1211 05	CETL	1214.05
H410	n409	2041.4	,00.0	1211.03	BP2	1212.15
					F (CLAY)	1207.95
TT 4 3 3	17410	2059 4	665 7	1211 05	CEIL	1213.25
H411	п410	2030.4	005.7	1211.05	BD2 P	1210 20
					BD2 K	1209 75
					FLOOP	1209.75
	** 4 7 7	2075 5	663 0	1211 05	CEIL.	1213 85
H412	H411	2075.5	003.0	1211.05	601D	1209 85
					BFZ FLOOP	1209.85
	** 4 1 0	2000 0	662 6	1211 05	CETI	1214 05
H413	H412	2080.8	003.0	1211.05	CEIT	1219.05
		•			BF2	1209.65
4 - 4	43.0			1011.05	FLOOR	1209.05
H414	H413	2093.0	661.9	1211.05	CEIL	1212.05
					BPZ R	1210.25
					BPZ L	1209.75
			688 0	1010.05	FLOOR	1210.05
H415	H414	2121.2	677.2	1210.05	CEIL	1212.05
					BP2	1210.25
					BP1	1208.55
				1007 05	F (CLAY)	1204.55
н416	H415	2135.6	673.9	1207.05	CEIL	1211.15
					BP2	1210.05
					BPI ·	1208.55
					FLOOR	1205.25
H417	н416	2150.5	675.8	1210.05	CEIL	1214.55
				•	BP2	1210.25
					FLOOR	1206.45
H418	H417	2189.5	691.9	1210.05	CEIL	1213.55
					BP2	1210.30
					FLOOR	1206.05
H419	H418	2200.9 '	702.0	1210.05	CEIL	1210.65
					BP2	1210.05
					FLOOR	1207.05

1938 - بىرىتىمۇرۇمۇرىيىتى بار س

(

((

н420	H419	2209.0	704.4	1210.05	CEIL F (BD)	1213.15
H421	н420	2236.8	717.9	1211.05	CEIL	1215.05
					BP2	1210.40
					F (BD)	1208.05
н422	H421	2249.0	728.6	1211.05	CEIL	1214.05
					BP2	1210.60
102		0051 0	R 40.4	1011 05	FLOOR	1206.55
H423	H422	2251.3	740.4	1211.05	CELL	1214.85
					BP2	1210.45
4121	H123	2272 5	755 0	1212 05	CETI.	1200.55
N424	11425	2212.5	/55.0	1212.05	RP2	1214.55
					FLOOR	1207.75
H425	н424	2275.8	755.7	1209.05		
н426	н425	2279.7	756.5	1209.05		
H427	H426	2291.8	753.9	1209.05	CEIL	1210.65
			•		FLOOR	1207.05
H428	н427	2297.8	752.6	1209.05		
н429	H428	2319.0	748.1	1211.05	CEIL	1214.45
					BP2	1211.30
					F (CLAY)	1209.65
н430	H429	2322.7	755.1	1211.05	CEIL	1216.05
					BP2	1211.10
					F (CLAY)	1210.35
H431	н430	2340.2	769.3	1212.05	CEIL	1215.55
					BP2	1211.15
					FLOOR	1207.55
н432	H431	2358.1	784.5	1211.05	CEIL	1215.85
					BP2	1211.30
					BPL	1209.80
					DF3 FLOOP	1214.35
11/22	11/20	2380 0	800 5	1211 05	CEIL	1214 05
H433	N452	2300.0	800.5	1211.05	BD2	1211.55
					FLOOR	1206.05
H434	H433	2388.0	816.2	1211.05	CEIL	1215.25
11-15-1		200010	02002		BP2	1211.40
					BP1	1209.95
					FLOOR	1206.55
D434	н434	2388.0	816.2	1209.63	SM TOP	1209.63
н435	H434	2417.5	839.2	1211.05	CEIL	1216.05
					BP1?	1211.75
					F (CLAY)	1205.55
н436	H435	2447.6	861.6	1212.05	CEIL	1214.05
					BP1	1211.25
					F (CLAY)	1203.05
н437	H436	2453.8	864.4	1213.05		1014 65
н438	H437	2461.0	867.8	1211.05	CEIL	1214,65
					BP2	1212.35
					r (CLAY) Pui	1210 05
D420	TT 4 3 0	2461 0	067 0	1010 25	Bri Rt accinc	1010 32
U438 U430	N438 U/20	2401.U · 2161 7	00/.0 875 A	1212.35	THAGTING	1616 · JJ
1433 UEC1	• HVJO	2701.7 2471 Q	880 3	1212.05	RP2	1212.05
n304	. 11472	27/1.0	000.0		D1 2	

a ann gaogailte

ĺ.

1

					BP1	1210.65
Н565	н564	2504.1	905.1	1212.05	CEIL	1214.75
					BP2	1212.25
					BP1	1210.75
					F (CLAY)	1203.75
H566	Н565	2518.2	915.0	1211.05	CEIL	1214.35
					BP2	1212.15
					BP1	1210.65
					FLOOR	1204.05
H567	Н566	2524.2	916.2	1207.05	CEIL	1214.05
					BP2	1212.25
					BPl	1210.65
					FLOOR	1203.55
H568	H567	2535.6	925.1	1207.05	CEIL	1214.05
					BP1	1210.85
					FLOOR	1203.05
H569	H568	2541-5	928.1	1207.05		
H570 ·	н569	2566.9	949.0	1207.05	CEIL	1214.55
		200017	21210		BP2	1212.85
					BP1	1211.35
					FLOOR	1203.35
8571	#570	2568 9	952.5	1208.05		
H572	H571	2576.0	960.5	1210.05	CEIL	1214.45
11572	11571	2370.0	500.5	1210103	BP2	1212.35
					BP1	1210.85
					F (CLAY)	1206.55
2572	2570	2586 6	966 4	1210-05	CEIL	1214.65
п5/5	H572	2300.0	900+4	1210.03	BP2	1212.35
					BP1	1210.75
				•	F (CLAY)	1206.95
11574	2572	2507 3	971 7	1210 05	CEIL	1215.25
n5/4	H575	2397.3	3/3.1	1210.03	BP2	1212.70
					BP1	1211.00
					FLOOR	1206.25
11675	4574	2612 1	079 5	1211 05	CELL	1216.05
H5/5	no/4	2013.4	978.5	1211.05	BD2	1212.95
		• •			BDI	1211.45
					FLOOP	1206 25
		2624 7	070 6	1212 05	PDI	1211 65
H5/6	H5/5	2024.1	979.0	1212:03	FLOOP	1206.25
		2644 6	002 5	1212 05	CELL	1215.15
H5//	H576	2044.0	903.5	1212.05	CDID CDID	1213.45
					BD1	1211 85
					FLOOP	1206.35
		2661 2	002 1	1212 05	CETL	1214 55
H578	H5//	2001.2	983.1	1212.05	CEIL	1010 05
					DF1 FLOOD	1203 55
			004 4	1010 05	CETI	1214 35
H579	H578	2680.2	984.4	1212.03	CUI	1214 05
					DrZ	1010 55
					Dri	1011 35
				•	Dr FLOOD	1201 55
			004.0	1014 05	L TOOK	1015 65
H580	H579	2694.5	984.9	1214.05	CEIL	1014 2F
					BPZ	1010 05
					RLT	1212.00

.

. .

(C

					FLOOR	1202.05
H581	Н580	2736.9	991.6	1214.05	CEIL	1216.55
					BP2	1214.60
					FLOOR	1199.95
D581	H581	2736.9	991.6	1213.23	SM TOP	1213.23
H582	H581	2769.8	999.8	1214.05	CEIL	1217.25
					BP2	1214,90
					BP1	1213.50
					FLOOR	1199 15
11593	H582	2817 8	1001 9	1214 05	CETL	1217 25
1303	11502	2017.0	1001.0	1211.05	BP2	1217.25
		••			BD1	1213.45
					FLOOP	1100 55
11501	2583	2843 2	1004 6	1214 05	CETL	1219 05
n304	n505	2043.2	1004.0	1214.00	CDID	1210.00
					DF 2	1213.00
TTOF	TTEOA	2967 0	1007 6	1214 05	OPI	1214.35
HORD	H204	2007.9	1007.0	1214.05	CEIL	1219.75
						1210.05
					BPI	1214.05
		0000 1	1012 0	1014 05	FLOOR	1199.35
H586	H282	2898.1	1013.0	1214.05	CEIL	1219.35
					BP2	1216.25
					BPI	1214.85
					FLOOR	1198.82
H587	H586	2932.1	1019.0	1214.05		
н588	н587	2936.1	1021.9	1214.05	CEIL	1218.05
					BP2	1216.35
					BP1	1215.00
					CHOCKS	1210.05
H589	н588	2942.8	1021.6	1214.05		
н590	н589	2967.0	1029.9	1214.05	CEIL	1216.55
					BP1	1215.25
H591	н590	2978.4	1032.1	1214.05	GEIL	1216.65
					BP1	1215.20
					BP	1214.05
					FLOOR	1198.25
н592	H591	2989.9	1037.5	1214.05		
н593	н592	3014.4	1041.4	1214.05	CEIL	1217.35
					BP1	1215.50
					BP	1214.95
					FLOOR	1198.05
н594	н593	3033.0	1046.4	1214.05		
н595	н594	3042.5	1049.5	1203.05	F (CLAY)	1198.05
н596	н595	3072.8	1053.7	1203.05	FLOOR	1197.75
н597	н596	3108.4	1053.4	1202.05		•
Н598	н597	3116.6	1053.5	1202.05	F (CLAY)	1197.55
D598	н598	3116.6	1053.5	1216.05	LINE	1216.05
					CEIL	1219.05
					BP1	1216.85
н599	D598	3143.6	1054.9	1216.05	,	
H635	D598	3113.6	1056.2	1216.05		
н636	H635	3114.1	1068.4	1216.05	CEIL	1217.45
		•			BP1	1217.05
					F (CLAY)	1207.25
H637	незе	3112.7	1079-4	1216-05	CEIL	1217.45
11027	10000	J /				

.

(

ί,

·

					BP1 LEDGE	1216.70 1212.85
					FLOOR	1211.05
н638	н637	3122.6	1087.0	1214.05		
н639	н638	3125.7	1088.1	1214.05	CEIL	1216.05
					LEDGE	1211.85
					F=FST/S+G	1210.85
н640	H639	3127.2	1092.8	1214.05	·	
н641	н640	3137.1	1101.1	1214.05	C POCKET	1218.15
					CEIL	1216.05
					LEDGE	1213.25
					F (FST)	1210.25
H642	H641	3151.3	1110.0	1213.05	CEIL	1217.05
					LEDGE	1213.75
					F (S+G)	1211.25
H643	H642	3122.5	1115.3	1214.05	C FISSURE	1220.65
					BP1	1217.05
					LEDGE	1213.75
					F (FST)	1211.05
H644	H643	3099.5	1119.6	1214.05	CEIL	1217.05
1044					BP1	1216.80
					LEDGE	1213.00
					SHELFST	1210.49
					F(S+G)	1209.55
4645	4644	3076.9	1104.9	1214-05	CEIL	1218.85
1045	11044	3070.9	110103		BP1	1216.40
					LEDGE	1212.95
					FLOOR	1210.05
4646	H645	3075.7	1101.7	1214-05	12001	
1040	H646	3044 6	1107.2	1213.05	CEIL	1216.55
1047	1040	3044.0	110/02	1210100	BP1	1216.05
					LEDGE	1212.35
					F(S+G)	1208.15
11619	4647	3036 5	1109.5	1213-05	- (0.0)	
H640	NG47 NG48	3030.5	1102.0	1213.05	CETL	1214.55
1049	N040	3031.7	11,02.0	1213.03	LEDGE	1212.25
					FLOOR	1208.45
11650	11640	3010 2	1105 6	1214.05	CEIL	1215.35
поро	N045	3010.2	1103.0	1214.03	LEDGE	1212.25
					TRENCH F	1207.75
TICE 1	11650	2001 0	1110 2	1214 05		1207175
HODI	H650	2070 2	1115 1	1213 05	CEIL	1216.05
H652	HOJI	2919.3	1110.1	1213.03	RDI	1215.70
					$E_{\rm F}$ (S+C)	1207.95
11653	11650	2060 0	1117 0	1213 05	CETI.	1216.25
нозз	H052	2900.0	111/00	1213:03	BDI	1215.45
					IFDOF	1213.45
					ELCINV)	1207 95
11CF 4	11653	2007 0	1132 0	1212 05	r (CHUI)	1201033
H654	H033	2701.7	1127 4	1010 05	CRII	1217 45
H022	1054	2909.0	113/.4	1212.00	LEDCE	1211 05
					TEDGE FI OOD	1207 25
		2011 6	1152 0	1010 55	TOOK	1201.23
H656	H655	3011.6	1123.8	1010 55	OBII	1216 55
H657	H656	3018.3	112/./	1212.33	CETT	1016 40
					RLT	TTTO.40

www.elster.com

1

					Fe OXIDE	1213.15
					F (CLAY)	1208.05
H658	H657	3024.4	1159.7	1212.55		
н659	H658	3028.5	1164.4	1213.05	CEIL	1218.05
					BP	1217.15
					BP1	1216.50
					F (BD)	1210.05
4660	4650	3008 3	1169 9	1213 05		1210.05
1000	1059	3000.3	1100.0	1213.05		1210.35
		2010 1	1177 6	1010 05	F (CLAI)	1206.25
HOOL	HOOU	3019.1	11//.6	1213.05		
H662	HOOT	3043.9	119/./	1211.05	CEIL	1220.55
					BP	1218.05
					BP1	1216.55
					LEDGE	1212.75
					FLOOR	1206.15
н663	н662	3045.4	1200.4	1211.05		
н664	H663	3059.6	1211.4	1211.05	CEIL	1220.05
					FLOOR	1205.75
H665	н664	3071.6	1221.5	1209.05		
H666	H665	3059.4	1223.5	1209.05	CEIL	1216,95
					BP1	1216.55
					RD	1215 95
						1215.55
	11666	2070 0	1007 0	1200 05	F (BD)	1200.95
H667	HOOD	3079.8	1237.0	1209.05	FLOOR	1204.95
H668	H667	3089.5	1247.8	1209.05		1001 05
H669	H668	3102.4	1256.2	1209.05	CEIL SLOT	1221.05
					BP	1216.95
					BP	1215.95
					FLOOR	1204.45
H670	н669	3093.0	1258.7	1209.05		
H671	н670	3052.6	1267.3	1212.55	CEIL	1217.95
					CROSS JT	1220.05
					BP1	1216.35
					FLOOR	1212.55
H672	H671	3021.4	1279.9	1216.05	CEIL	1217.85
					BP1	1216.25
					MUDCRACKS	1213 75
					F (StC)	1213.75
5670	11670	2021 4	1270 0	1015 05	f (S+G)	1215.45
D672	H672	3021.4	12/9.9	1215.05	T ON LEDGE	1213.65
H673	H6/2	3003.4	1308.7	1210.05	CEIL	1219.55
					BPI	1216.95
					LEDGE	1212.85
		·			F FISSURE	1206.65
H674	н673	3040.5	1337.7	1216.05	CEIL	1219.75
					BP1	·1217.25
					BP	1216.45
					LEDGE	1212.85
					F FISSURE	1207.15
H675	H674	3073.3	1352.9	1216.05	CEIL	1218.55
					BP	1217.35
					BP	1216.75
					BD	1215.75
					LEDGE	1211 55
						1200 35
			1262.0	1016 05	F FISSURE	1200.33
H676	H675	3105.2	T303°3	1216.05	CEIL	1220.65

Ć,

Ś

						BP	1217.75
						BP	1216.90
ie -						BP	1216.35
						BP	1215.45
						LEDGE	1213.05
						F FISSURE	1206.45
	D676	H676	3105.2	1369.9	1213.73	SM TOP	1213.73
	H677	н676	3171.0	1404.9	1216.05		
	D634	H677	3171.0	1404.9	1216.57	+ ON WALL	1216.57
	н634	D634	3171.0	1404.9	1216.57	CEIL	1218.07
						BP1	1215.37
						FLOOR	1211.77
						TRENCH	1203.77
	н633	н634	3129.6	1419.1	1216.57	CEIL	1217.52
						BP1	1215.57
						FLOOR	1212.97
	н632	н633	3128.1	1426.0	1219.57		
	H631	H632	3136.4	1430.4	1219.57	CEIL	1221.27
						F (BD)	1216.57
	H630	H631	3152.8	1442.7	1219.57	CEIL	1221.07
				· · · · · · ·		F (BD)	1215.57
	H629	H630	3161.6	1454.9	1218.57	CEIL	1219.97
	11025	noso	510110	1.10.100		F (BD)	1217.07
	4628	#629	3165.7	1458.8	1217.57	- ()	
	H627	H628	3170.0	1461.7	1215.57	CEIL	1219.57
	11027	1020	5170.0	110107	1210101	BP1	1215.67
						· F (BD)	1213.07
	4626	4627	3200 6	1493.4	1215.57	CEIL	1218.77
(1020	11027	5200+0	1475.4	1213.37	BP2	1216.77
						BP	1215.92
						RPI	1215.47
	NGOF	4676	2260 G	1479 5	1215 57	CEIL	1221.67
	по25	N020	5200.0	14/2.5	1213.37	BD	1216 52
					. 4		1210.52
	TTCOA	TACOL	2200 8	1504 0	1013 57	CEII	1221 97
	H624	H625	3290.0	1304.0	1213.37		1017 77
						DF2	1016 37
						סב ומפ	1210.37
						CDAVEL	1212 12
						GRAVED E CIOM	1212.42
			2220 4	1526 0	1010 57	r SLUI	12210.97
	H623	H624	3329.4	1230.9	1213.57	CUL	1221.07
						DF2	1210.42
						DFT	1213.57
			2200 7	1500 4	1010 57	WIDEST	1212.57
	H622	H623	3328.7	1562.4	1213.57		1012 16
	D622	H622	3328.7	1562.4	1213.40	SM TOP	1213.40
	H621	H622	3336.4	13/0.4	1213.3/	С Ц Ц Ц Ц Ц Ц	1017 70
						BP2	1216 22
						BP	1215 27
						BLT BLT	1213.37
					1010	F (CLAY)	1203.2/
	н620	H621	3369.5	T001.8	1212.57	CEIL	1220.0/
						BP2	1215 60
1C						BPI	1212.02
13						FLOOR	1202.07

.

ng ing ang akt Alway aga sa iku ak

Н619	н620	3408.6	1638.4	1212.57	CEIL	1219.57
					BP	1216.47
					BPl	1215.57
					F (CLAY)	1200.57
D619	н619	3408.6	1638.4	1213.02	SM TOP	1213.02
H618	H619	3440.2	1633.1	1212.57	BPl	1215.82
					CEIL	1219.82
					BP	1212.37
					F (CLAY)	1200.07
H617	H618	3468.9	1659.9	1212.57	CEIL	1220.07
					BP2	1217 .77
					BP1	1215.67
					WIDEST	1212.07
					F (CLAY)	1198.07
Н616	H617	3504.6	1677.3	1212.57	CEIL	1221.67
					BP2	1218.42
					BP	1217.07
					BP1	1215.97
					WIDEST	1211.77
					F (CLAY)	1198.07
Н615	H616	3522.7	1695.1	1212.57	CEIL	1221.27
					BP1	1216.47
					WIDEST	1211.57
					F (CLAY)	1197.57
H614	н615	3558.8	1728.7	1211.57	CEIL	1218.17
					BP2	1218.17
					BP1	1216.27
					WIDEST	1211.57
					F (CLAY)	1179.57
H613	H614	3576.2	1725.0	1211.57	CEIL	1220.27
					BP1	1216.57
					WIDEST	1212.27
H612	H613	3585.0	1753.7	1211.57	LEDGE	1210.07
					PVC TOP	1194.37
					STREAM	1166.00
					FLOOR	1164.57
D612	H612	3585.0	1753.7	1208.51	SM TOP	1208.51
H611	H612	3598.1	1775.5	1212.57	CEIL	1222.57
					BP1	1216.57
					LEDGE	1210.67
					F (CLAY)	1166.97
D72	H611	3639.6	1803.5	1211.57	SM TOP	1211.57
H827	H401	1818.8	677.9	1221.05		
H828	H827	1811.0	680.9	1228.05	DOME CEIL	1236.55
					CEIL	.1230.55
					DL20/DS20	1230.55
					DS17/L16 S	1228.25
				·	DS17/L16 N	1227.95
					DS17/L16 E	1227.55
н829	H828	1762.2	686.8	1228.05	CEIL	1231.50
					DS21/DL20	1231.50
					DL20/DS20	1230.65
		•			F (BD)	1224.05
		-			DS17/DL16	1227.70
н830	н829	1715.2	689.3	1228.05	CEIL	1233.45

122 103314

(

 $\{ \cdot \}_{i=1}^{n-1}$

					DL23/DS23	1233.45
					DS17/DL16	1226.90
					FLOOR	1224.35
H831	H830	1669.0	695.0	1229.05	CEIL	1232.95
1001	noov				DS17/DL16	1226.80
					FLOOR	1225.05
***	u931	1635 0	698 6	1229.05	CEIL	1234.95
HOJZ	HOJI	1033.0	0,0,0	1223.03		1226.35
					F (BD)	1226.35
*****	11022	1596 9	701 9	1228 05	CETL	1228.70
позз	1052	1990.0	/01.5	1220.03		1228.70
					DS17/DL16	1225.75
					F (BD)	1224.75
11024	4022	1513 5	704 5	1227 05	CEIL	1227.85
H834	позз	1313.3	/04.5	1227.03		1227.85
						1227.05
					MUCK TOP	1224.05
					MUCK IUF.	1223.05
		1000 0	221 0	1215 05	r (BD) CRTI	1215 75
H835	H370	1282.8	221.0	1213.05		1215.75
					ספת לסדת	1213.75
		1064 1	225 4	1010 05	r (DD) CRII	1213.05
H836	H835	1264.1	223.4	1213.05		1214.05
						1214.05
					ען אפע עדע שטען גע ערע ד	1213.05
			000 0		F (BD)	1212.05
H837	н836	1241.1	229.9	1213.05		1213.05
						1213.65
						1211.45
_					F (SILT)	1207.35
н838	H837	1232.5	228.2	1208.05	CEIL	1211.55
					BP3	1209.75
					F (SILT)	1206.55
н839	H838	1211.4	232.3	1208.05	CEIL	1208.85
					F (SILT)	1205.25
н840	H839	1180.8	241.6	1208.05	C POCKET	1216.55
					CEIL	1212.95
						1212.35
					DS1/DT4	1209.95
					WAVY BP	1207.85
					STREAM	1171.55
				·	FLOOR	1170.55
R72	D72	3639.6	1803.5	1210.75	CEIL	1223.87
					LEDGE	1210.75
т73	R72	3659.7	1818.1	1213.37		
R74	т73	3684.6	1812.4	1210.28	CEIL	1219.30
					BP1	1217.33
т75	R74	3722.3	1847.6	1215.04		
R76	т75	3743.5	1863.8	1210.71	C POCKETS	1222.19
					CEIL	1219.67
					BP1	1217.99
т77	R76	3781.5	1888.5	1212.58		
R77	т77	3781.5 .	1888.5	1212.58		
D77	R77	3781.5	1888.5	1213.76	POPC BOT	1213.76
R78	T77	3762.1	1892.4	1209.39	CEIL	1217.66
					BP1	1217.26

Ĩ

C

					BP	1211.59
т79	R78	3715.6	1901.9	1211.31		
R80	т79	3696.8	1940.5	1206.56	CEIL	1216.08
					BPl	1216.11
					BP	1211.29
T81	R80	3728.8	1962.1	1211.80	21	1011000
R82	T81	3716.1	1991.3	1210.77	BP2	1218 19
1.02	101	0/2012	200200	1010077	BD1	1216 61
					BD	1210.01
ጥይን	B8 2	3728 6	1998.1	1219 72	DI	1211.00
105 R84	TQ2	3734 9	1998.5	1217 59	BD3	1001 22
TQ5	R84	3737 7	2005 5	1225 81	DIJ	1221.33
586	TR5	3745 3	2005.3	1221 60	BD3	1221 60
500	105	5745.5	2005.5	1221.00		1221.00
					D31/D14	1223.27
						1223.00
						1224.00
						1225.54
			•			1226.27
					DT0/D20	1226.95
607	m05	2205 0	1000 0	1005 00	SP CEIL	1229.28
587	185	3/85.9	1990.0	1225.39		1226.18
					DF3/D23	1230.41
					DL10/DS10	1231.56
					CEIL	1235.24
S88	T85	3772.5	1990.4	1222.96		
D88	S88	3772.5	1990.4	1225.47	BD TIP	1225.47
R89	т85	3763.3	2032.5	1217.98	CEIL	1228.07
					DL3/DS3	1224.71
					BP3	1221.66
т90	R89	3812.5	2062.6	1225.30		
S91	т90	3805.2	2054.2	1218.99		
D91	S91	3805.2	2054.2	1219.71	POOL LEVEL	1219.71
R92	Т90	3824.1	2072.9	1224.42	CEIL	1231.80
					DS3/DL2	1226.03
т93	R92	3867.2	2107.1	1229.18		
R94	т93	3923.6	2094.1	1225.44	CEIL	1232.50
т95	R94	3998.5	2079.5	1229.14		
S96	т95	3989.7	2078.0	1224.91	DS3/DL2	1226.89
R97	т95	4054.3	2120.0	1225.84	CEIL	1233.39
					DS3/DL2	1227.75
т98	R97	4076.1	2137.1	1230.08		
R99	т98	4084.0	2153.7	1229.42		
D99	R99	4084.0	2153.7	1231.83	CHIP TOP	1231.83
R100	D88	3772.5	1990.4	1222.43		
T101	R100	3837.1	1991.5	1229.83		
R102	T101	3892.4	1991.5	1225.97	DS10/DL9	1232.79
					DS9/DL8	1231.58
T103	R102	3939.3	1978.1	1230.43		
S104	T103	3908.8	1991.0	1222.87		•
D104	s104	3908.8	1991.0	1227.15	CHIP TOP	1227.15
R105	T103	3981.5	1976.6	1224.21	DL10/DS10	1234.06
T106	R105	4002.4	1971.4	1225.98		
R107	т106	4065.8	1965.9	1219.73	CEIL	1232.20
		•			BP3	1222.55
т108	R107	4078.9	1963.8	1221.24		

a commence

í

(

(

R109	T108	4102.5	1963.6	1215.10	CEIL	1227.57
					BP3	1222.98
T110	R109	4127.2	1963.2	1216.75		
S111	T110	4109.7	1941.5	1210.07		
D111	S111	4109.7	1941.5	1216.67	PEND TIP	1216.67
R112	T110	4195.1	1961.4	1212.13	CEIL	1226.89
					BP1	1222.30
					BP	1213.11
T113	R112	4275.9	1960.0	1215.91		·
R114	T113	4364.6	1955.3	1211.62	CEIL	1231.31
					BP	1214.31
T115	R114	4435.4	1960.3	1216.80		
R116	Т115	4507.4	1955.2	1212.39	BP	1215.18
T117	R116	4607.1	1958.7	1219.02		
R118	T117	4706.8	1955.2	1214.74	CEIL	1231.15
					BP1	1224.58
	•				BP	1216.45
D118	R118	4642.0	1960.9	1216.83	ELBOW BOT	1216.83
T119	R118	4737.7	1906.6	1219.36	_	
R120	T119	4785.7	1896.4	1215.64	BP1	1223.19
T121	R120	4832.7	1895.6	1220.18		
R122	T121	4908.1	1886.4	1214.15	CEIL	1227.27
T123	R122	4966.2	1874.0	1217.05		
S124	т123	4964.3	1879.8	1213.31		
D124	S124	4964.3	1879.8	1216.53	WALL DOT	1216.53
R125	D124	4964.3	1879.8	1213.37		
T126	R125	4977.9	1870.1	1216.53		
R127	T126	5008.4	1872.7	1211.87	POOR BP	1215.78
					BP	1213.28
T128	R127	5074.6	1910.2	1216.64		
R129	T128	5110.8	1896.6	1211.78	CEIL	1226.22
					BIOSPARITE	1219.72
					POOR BP	1216.24
T130	R129	5127.4	1864.0	1214.57		•
S131	т130	5107.8	1885.8	1211.43		
D131	S131	5107.8	1885.8	1214.89	SM TOP	1214.89
R132	т130	5179.1	1859.5	1210.00	POOR BP/XT	1216.17
т133	R132	5228.0	1853.5	1214.43		
R134	T133	5270.3	1848.3	1209.07	BP=SPAR	1219.57
					BP=SPAR	1216.92
т135	R134	5295.3	1801.4	1213.30		
S136	T135	5302.7	1798.7	1208.13		
D136	S136	5302.7	1798.7	1213.32	BD TOP	1213.32
R137	т135	5353.6	1799.4	1209.16	CEIL	1225.56
					D/S	1225.56
					LOW SPAR	1217.23
					SED TOP	1212.37
T138	R137	5384.0	1790.6	1211.54		
R139	T138	5397.7	1753.0	1205.09	C SLOT	1221.83
					CEIL	1218.55
					LOW SPAR	1216.91
T140	R139	5456.1 .	1751.0	1211.69		
R141	т140	5512.5	1749.0	1207.16	CEIL	1220.28
					LOW SPAR S	1217.99
					LOW SPAR N	1217.33

 $\langle \langle \rangle$

. .

т	142	R141	5549.7	1747.7	1212.52		
R	143	т142	5555.3	1730.5	1210.71	CEIL	1222.20
						UPPER SPAR	1218.75
						LOW SPAR	1216.62
т	144	R143	5615.2	1729.4	1219.04		
R	145	т144	5645.4	1729.4	1214.73	FLAT CEIL	1222.60
						BP	1220.17
						SED TOP	1220.14
D	145	R145	5645.4	1729.4	1218.09	SM TOP	1218.09
S	146	T144	5631.5	1739.8	1213.87		
D	146	S146	5631.5	1739.8	1216.82	ELBOW TOP	1216.82
R	147	D88	3772.5	1990.4	1223.04		
т	148	R147	3739.9	2005.6	1225.68		
R	149	т148	3685.9	2002.8	1218.23	DS3/DL2	1224.41
						DL1/DS1	1222.76
т	150	R149	3618.8	2006.3	1223.23	•	
R	151	т150	3580.9	2010.0	1221.74	CEIL	1232.76
						DL9/DS9	1227.96
т	152	R151	3526.3	2017.6	1225.43		
R	153	T152	3457.5	2020.0	1220.67	CEIL	1229.86
						DL12/DS12	1229.86
						DL9/DS9	1226.15
т	154	R153	3399.7	2025.1	1223.73		
R	155	T154	3348.2	2026.0	1219.41	CEIL	1228.10
						DL9/DS9	1224.56
т	156	R155	3294.3	2031.7	1225.28		
s	157	т156	3325.9	2027.2	1219.95		
D	157	s157	3325.9	2027.2	1221.13	FLAGGING	1221.13
R	158	т156	3228.8	2035.1	1219.69	CELL	1229.77
						01.9/059	1223.01
Ψ	159	R158	3164.5	2032.8	1223-63	227,202	1000001
R	160	T159	3110.1	2036.2	1220-25	DL10/DS10	1222.61
- `	200			200012		CEIL	1228.45
Ţ	161	R160	3066.3	2040.0	1226.36	0212	1220113
ŝ	162	T161	3064.2	2044.1	1223,21	CELL	1231.58
R	163	T161	3038.7	2039.8	1217.57	CEIL	1227.74
	100		000017	200510	202/00/		1222.20
ጥ	164	R163	3003.4	2038.5	1226-49	0010,0010	1222.20
R	165	T164	2954.5	2038.5	1220.03	CETL	1226 95
•	105	1101	200110	2000.0	1220103		1226.95
ጥ	166	R165	2892.5	2048.3	1223.91		1220.75
s	167	T166	2930.9	2045.0	1219.73		
ס	167	S167	2930.9	2045.0	1220 10	SM TOP	1220 10
ע ק	168	т166	2844.5	2046.7	1221.84	DA 101	1225.68
т Т	169	R168	2818.3	2048.5	1224 77		1223.00
P	170	л169	2793.8	2052.8	1224 55	CETL	1229.01
1	170	1105	2755.0	2052.0	1224.33		1229.01
							1227.87
						DI 15/D915	1227 01
m	171	R170	2729 0	2054 5	1226 05		/•V1
T D	172	M171	2653 8	2057.5	1223.03	CRIL	1227 17
R	±12	****	2000.0	200/01	122J · 12		1007 17
			•				1226 11
						0115/0215	1220.14
m	170	D170	2614 9	2064 0	1000 70	CTED /CTUD	1664.03
Т	113	RT / Z	2014.9	2004.0	1223.12		

geographic companye

(

ζ

•

R174	т173	2603.0	2061.9	1221,99	DL15/DS15	1224.54
D174	R174	2603.0	2061.9	1225.07	SM-ST TOP	1225.07
D175	R174	2603.0	2061.9	1224.39	STAL TIP	1224.39
S175	T173	2634.7	2062.6	1220.70	CONE TOPS	1219.78
R176	D157	3325.9	2027.2	1219.80		
m177	R176	3280.9	2030.0	1225.51		
\$178	m177	3271.8	2029.1	1222.73		
0170	S178	3271 8	2029.1	1222 80	PADIO LOC	1222 80
D170	5170 77	3791 5	1999 5	1209 46	KADIO 1000	1222.00
m100		3701.5	1004 2	1203.40		
T180	R1/9	3/92.9	1004.2	1213.75		1004 04
KIST	1180	3833.1	1002.0	1210.18	C FISSURE	1224.94
m100	D101	2016 1	1069 0	1014 00	BPI	1218.02
T182	R181	3910.1	1000.2	1214.08	0777	1010 40
R183	T182	4011.4	1829.8	1209.64	CEIL	1219.49
-104	-100	1010 1	1056 0	1010.00	SPAR BED	1215.29
T184	R183	4048.4	1856.9	1213.86		1010 04
R185	T184	4070.9	1864.9	1210.43	CEIL	1219.94
		•			BP1	1219.94
					SPAR BED	1216.30
T186	R185	4053.6	1897.5	1214.46		
S187	T186	4055.4	1902.4	1210.57		
D187	S187	4055.4	1902.4	1213.32	SM TOP	1213.32
R188	T186	4085.8	1926.5	1210.13	CEIL	1223.26
					SPAR BED	1215.64
T189	R188	4107.5	1938.0	1214.21		
R190	T189	4117.1	1944.5	1210.06		
D111	R190	4117.1	1944.5	1216.68	PEND TIP	1216.68
R191	D104	3908.8	1991.0	1222.45	DS9/DL8	1231.73
т192	R191	3935.9	2011.0	1225.19		
R193	T192	3945.1	2020.6	1224.58		
т194	R193	3965.5	2026.5	1231.02		
\$195	T194	3957.1	2022.5	1228.69	CEIL	1241.49
2250					DL10/DS10	1233.56
R196	π 194	4003.1	2025-8	1230.83	CEIL	1241.99
N1 90	1104	100012	202010		DL10/DS10	1234.28
ም ነ 07	B196	4038.8	2021.7	1238.67		
c100	m107	4029 1	2022.4	1236.62	CEIL	1245.48
0100		4046 8	2022.4	1230.02	CHIE	1243010
MJ00	D100	4040.0	2021.0	1231.69		
T200	R199	4052.4	2010.9	1231.00		1235 65
R201	T200	4113.I	2010.7	1230.01	5110/5310	1233.03
T202	RZUI	4155.9	2000.9	1237.23	BIAM CETI	1244 17
R203	1202	41/2.3	1998./	1235.45	FLAT CEIL	1244.17
			1000 5	1040 10	SHELFST	1241.50
D203	R203	4172.3	1998.7	1240.10	SM TOP	1240.10
т204	R203	4245.1	1985.9	1239.19		
S205	T204	4240.6	1989.9	1236.59	CEIL	1243.06
					LAKE LEVEL	1226.62
					CONE TOP	1229.85
D205	S205	4240.6	1989.9	1239.72	RAIL TOP	1239.72
R206	т204	4287.3	1978.4	1234.08	CEIL	1241.40
					DL10/DS10	1237.41
т207	R206	4315.1	1974.5	1234.96		
R208	т207	4329.9	1974.8	1229.83	CEIL	1236.65
					DL9/DS9	1236.65
т209	R208	4411.7	1969.1	1231.77		

(

 $\left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right)$

.

R210	т209	4403.2	1982.8	1223.01	CEIL	1235.21
					BP2	1225.53
T211	R210	4384.3	2012.9	1224.72		
R212	T211	4393.9	2017.6	1221.68	CEIL	1230.76
					SED TOP	1228.89
					BP2	1225.09
т213	R212	4426.0	2012.8	1223.97		
R214	т213	4460.3	2023.2	1220.08	CEIL	1227.40
					BP2	1225.22
т215	R214	4510.2	2016.2	1222.71		
R216	т215	4541.3	2010.8	1220.14	CEIL	1226.27
					BP2	1224.14
т217	R216	4552.8	2018.3	1223.35		
R218	T217	4579.7	2015.7	1221.06	CEIL	1231.56
					BP3	1228.87
					BP	1225.64
					BP2	1224.22
T219	R218	4589.1	2021.1	1226.80		
R220	Т219	4606.6	1971.6	1223.26	C 4TH AVE	1234.91
					SED TOP	1230.05
					BP	1226.12
					BP2?	1224.81
					BP1	1224.05
T221	R220	4615.5	1969.7	1224.33		
R222	т221	4642.2	1962.0	1214.74		
D118	R222	4642.2	1962.0	1216.83	ELBOW BOT	1216.83
R223	D124	4964.3	1879.8	1213.18	BP	1218.49
т224	R223	4942.1	1923.4	1218.85		
R225	T224	4931.4	1941.1	1218.04	CEIL	1227.23
					BP2	1227.23
					BP	1218.38
т226	R225	4929.9	1945.4	1225.10		
R227	т226	4923.5	1942.9	1224.92	DS1/DT4	1231.71
					SED TOP	1235.42
T228	R227	4917.2	1944.2	1233.54		
R229	т228	4913.8	1946.9	1233.23	CEIL	1243.57
					DL10/DS10	1239.96
т230	R229	4910.4	1948.4	1239.69		
R231	т230	4905.3	1950.5	1239.33	CONCR C	1249.82
T232	R231	4896.4	1952.3	1248.75		
R233	T232	4894.3	1957.3	1248.69		
D233	R233	4894.3	1957.3	1250.49	BLDG FLOOR	1250.49
R234	D233	4894.3	1957.3	1249.95		
т235	R234	4909.3	1967.0	1255.27		•
R236	T235	4933.0	1999.0	1255.09		
T237	R236	4971.3	2037.3	1264.16		
R238	T237	5008.7	2078.9	1261.54		
т239	R238	5062.8	2114.0	1263.75		•
R240	т239	5110.7	2115.3	1259.69		1004 53
D240	R240	5110.7	2115.3	1264.61	POST TOP	1264.61
T241	R240	5083.9	2082.8	1268.87		
R242	Т241	5066.1	2076.0	1267.32		
т243	R242	5052.0	2055.8	1276.21		
R244	т243	5031.8	2049.1	1271.92		1000 00
D244	R244	5031.8	2049.1	1272.60	BM15=NAIL	1272.60

Ć

(
	Hl	D174	2535.0	2072.0	1222.07	CEIL DS16/DL15	1232.07 1225.32
	Н2	Hl	2555.0	2091.0	1223.07	FLOOR CEIL LOW CEIL	1221.67 1224.62 1222.67
	нз	Н2	2585.0	2116.0	1223.07	SPAR TOP RST TOP WL 8-7-91	1221.77 1222.57 1222.17
						CONE TOPS LAKE BOT	1222.37
	н4	нз	2619.0	2150.0	1228.07	CEIL F (FST)	1232.07 1226.37
	н5	H4	2594.0	2170.0	1228.07	CEIL DL17/DS17 FLOOR	1228.97 1225.82 1223.17
	Н6	н5	2427.0	2180.0	1228.07	CEIL DL17/DS17 FLOOR	1231.47 1227.87 1225.57
	н7	Н6	2299.0	2195.0	1222.07	CEIL DL17/DS17	1226.52 1223.12
	Н8	H7	2255.0	2195.0	1217.07	FLOOR	1211.07
	D8	H8	2255.0	2195.0	1211.88	SM TOP	1211.88
	Н9	Н8	2201.0	2200.0	1215.07		
	D9	Н9	2201.0	2200.0	1212.09	DOT ON BD	1212.09
	H10	Н9	2102.0	2214.0	1217.07	CEIL	1223.77
						DL17/DS17	1221.57
						F (BD)	1212.07
	H11	н10	2063.0	2219.0	1202.07	DS1/DT4	1199.87
						BP3	1199.30
						F (MUD)	1195.27
	н36	н]]	2014.0	2234.0	1216.07	CEIL	1221.87
						DL17/DS17	1220.87
						F (MUD)	1213.72
	H12	н36	1837.0	2259.0	1216.07	CEIL	1224.57
	D12	H12	1837.0	2259.0	1212.76	CAIRN TOP	1212.76
·	н13	H12	1777.0	2268.0	1206.07	DS10/DL9	1211.07
			_,			FLOOR	1201.07
	D13	H13	1777.0	2268.0	1204.80	SSTRAW TIP	1204.80
	H14	H13	1778.0	2271.0	1203.07	SP CEIL	1206.27
	H15	H14	1807.0	2293.0	1200.07	CEIL	1205.47
						BP	1198.37
						CRAWL CEIL	1198.37
						FLOOR	1195.37
	н16	н15	1871.0	2313.0	1198.07	CEIL	1204.07
						DL1/DS1	1200.47
						BP3	1198.77
						BP2	1196.57
						F (S+G)	1191.57
	H17	н16	1925.0	2347.0	1198.07	CEIL	1200.57
	**** 1					BP	1199.07
						D/S	1196.97
						ROCK TOP	1192.57
			•	•		STREAM	1170.07
	н18	רוח	1728.0	2278-0	1206.07	DS10/DL9	1209.92
						F (SAND)	1203.22
						• • • • • •	

(C) ,

. . .

•

;

.

.

H19	H18	1610.0	2293.0	1226.07	CEIL	1229.57
					F (BD)	1224.07
D19	Н19	1610.0	2293.0	1224.72	STAL TIP	1224.72
н20	D9	2201.0	2200.0	1215.07	DS10/DL9	1212.96
H21	Н20	2250.0	2239.0	1210.07	CEIL	1219.37
					F (BD)	1207.07
H22	H21	2319.0	2288.0	1208.07	CEIL	1215.47
					DS10/DL9	1213.07
					FLOOR	1203.07
H23	H22	2378.0	2337.0	1203.07	D/S	1198.67
					FLOOR	1196.57
H24	Н23	2462.0	2327.0	1201.07	CEIL	1211.07
•					D/S	1198.47
					F (BD)	1195.57
Н25	H24	2575.0	2421.0	1201.07	WATER LEV	1169.57
					FLOOR	1167.07
Н26	Н25	2580.0	2421.0	1202.07	BP3	1201.97
	•				BP	1200.72
					D/S	1199.27
Н27	н26	2619.0	2416.0	1205.07	CEIL	1210.87
					DS2	1208.17
					DS1/DT4	1207.07
			-		BP3	1205.22
					WATER LEV	1202.27
H28	D8	2240.0	2180.0	1215.07	DL10/DS10	1213.47
н29	Н28	2147.0	2101.0	1215.07	CEIL	1218.87
					DL10/DS10	1212.67
					F (BD)	1211.27
н30	н29	2043.0	2126.0	1219.07	CEIL	1223.97
					DS17/DL16	1220.77
					FLOOR	1213.87
H31	н30	1748.0	2150.0	1209.07	CEIL	1219.57
					SED TOP	1215.87
					DL10/DS10	1210.17
					F (SAND)	1206.07
D31	H31	1748.0	2150.0	1206.44	RADIO LOC	1206.44
Н32	Н31	1709.0	2111.0	1210.07	CEIL	1215.07
					FLOOR	1207.07
н33	H32	1659.0	2077.0	1210.07	DOME CEIL	1223.07
					C 6TH AVE	1216.47
					SED TOP	1214.77
					DS11/DL10	1209.73
					F (SAND)	1208.07
н34	Н33	1556.0	1993.0	1212.07	HIGH CEIL	1218.77
					BD TIP	1210.35
					THRESHOLD	1209.92
					DL10/DS10	1209.47
					F (SAND)	1208.52
Н35	Н34	1526.0	1958.0	1213.07	CEIL	1217.37
					DL10/DS10	1209.07
					F (MUD)	1208.33
R795	D88	3772.5	1990.4	1222.41		
т796	R795	3755.6 '	1999.4	1225.31		
R797	т796	3735.9	2009.0	1223.18		
D797	R797	3735.9	2009.0	1224.28	BM +	1224.28

a a single a three strategy parts a

Further State

Ć

Ĺ

	R852	Dl	0.0	0.0	1229.40		
	т853	R852	13.2	9.8	1233.04		
	R854	т853	-25.6	63.1	1229.23		
	т855	R854	-66.8	115.9	1233.69		
	R856	т855	-95.5	185.1	1228.91		
	т857	R856	-133.4	239.2	1233.29		
	R858	т857	-176.2	282.8	1228.94		
	т859	R858	-227.7	318.2	1232.22		
	R860	т859	-282.2	316.8	1226.54		
	D861	R860	-282.2	316.8	1228.36	+ ON ROCK	1228.36
	R862	Dl	0.0	0.0	1229.40		
	т863	R862	15.9	-53.7	1232.85		
	R864	т863	7.1	-120.5	1228.42		
	т865	R864	-1.6	-190.9	1233.50		
	R866	т865	-13.1	-253.2	1228.49		
	T867	R866	-17.0	-317.7	1231.71		
	R868	T867	28.8	-323.3	1227.38		
	т869	R868	41.4	-320.1	1236.61		
	R870	т869	48.7	-326.1	1235.25		
	T871	R870	55.7	-334.9	1244.77		
	R872	T871	58.2	-327.7	1240.86		
	D873	R872	58.2	-327.7	1244.41	+ AT ENT	1244.41
	R874	T871	39.9	-350.4	1235.87		
	т875	R874	28.7	-392.2	1244.65		
	R876	т875	33.1	-388.5	1243.46		
	т877	R876	45.0	-396.4	1253.26	,	
	R878	т877	58.0	-401.1	1252.56		
	D879	R878	58.0	-401.1	1254.95	+ AT ENT	1254.95
	R880	D205	4240.6	1989.9	1236.74		
	T881	R880	4247.4	1987.4	1239.55		
	S882	T881	4215.0	1991.4	1236.14		
	D883	S882	4215.0	1991.4	1239.19	RAIL TOP	1239.19
· •	S884	T881	4210.5	1992.6	1236.01		
	D885	S884	4210.5	1992.6	1239.01	RAIL TOP	1239.01
						LAKE LEVEL	1233.21
	R886	T881	4280.6	1978.5	1234.85		
	T887	R886	4305.9	1975.0	1236.37		
	S888	T887	4298.8	1976.8	1233.07	TOP SEEP	1233.28
						LOWER SEEP	1233.12
	R889	D240	5110.7	2115.3	1259.94		
	т890	R889	5143.8	2059.0	1269.59		
	R891	т890	5207.9	2017.4	1267.12		
	т892	R891	5275.0	1990.3	1271.76		
	R893	т892	5338.5	1960.0	1267.71		
	т894	R893	5408.4	1931.0	1271.47		
	R895	т894	5514.3	1881.7	1266.79		
	т896	R895	5577.4	1856.1	1271.00		
	R897	т896	5653.0	1824.0	1266.94		
	D898	R897	5653.0	1824.0	1271.57	POST TOP	12/1.57
	т899	R897	5696.4	1792.5	1273.09		
	R900	T 899	5696.9	1739.8	1272.98		
	Т901	R900	5695.9 .	1685.1	1282.55		
	R902	т901	5696.9	1647.7	1282.21		
	т903	R902	5695.1	1596.1	1291.84		
	R904	т903	5695.6	1564.7	1291.74		

()

i (

т905	R904	5694.5	1521.2	1300.71
R906	т905	5694.2	1483.6	1300.57
т90 7	R906	5692.3	1431.5	1309.37
R908	Ͳ 90 7	5694.1	1365.0	1309.32
т90 9	R908	5694.1	1307.1	1314.46
P910	T 909	5698.5	1205.3	1310.03
m911	R910	5700.0	1147.8	1315.98
DQ12	mg11	5703.6	1065.3	1315.55
m012	PQ12	5706.2	1016 7	1323 31
1913 DO11	mQ13	5700.2	968 7	1323.25
m015	P91 <i>A</i>	5712 3	923 3	1331 80
D016	TQ15	5714 4	874 3	1331 79
m017	P016	5717 0	825 1	1340 66
1917 D019	mQ17	5719 6	779 6	1340.00
M010	1917	5721 0	722 5	12/0 19
1919	M910	5721.0	753 . 5	1349.10
R920 m021	1919	5724.2	509.3	1252 77
T921	K920 m001	5727.4	596.5	13/6 10
R922	T921	5/33.2	515.5 AEQ C	1340.10
T923	R922	5/33.2	458.0	· 134/./8
R924	1923	5/36.1	3/0.5	
1925	R924	5/35.0	314./	1343.55
R926	T925	5/3/.3	227.2	133/.//
1927	R926	5/39.3	169.2	1340.59
R928	1927	5/40.1	. 8/.5	1332.07
T929	R928	5742.0	43.3	1333.55
R930	T929	5742.6	-30.2	1324.86
1931	R930	5742.0	-98.7	1326.19
R932	T931	5736.1	-183.8	1320.10
D932	R932	5736.1	-183.8	1324.12
T933	R932	5770.4	-242.1	1323.41
R934	T933	5821.4	-296.7	1317.99
T935	R934	5856.7	-338.0	1322.30
R936.	. T935	5913.8	-389.4	1318.99
T937	R936	5981.5	-409.5	1324.06
R938	T937	6054.7	-352.3	1322.43
T939	R938	6112.4	-314.1	1328.90
R940	т939	6195.4	-273.6	1326.52
T941	R940	6250.5	-255.2	1331.66
R942	T941	6340.5	-228.6	1328.77
т943	R942	6416.1	-219.9	1332.91
R944	Т943	6460.2	-213.0	1329.77
т945	R944	6534.3	-213.0	1333.83
R946	т945	6610.3	-224.3	1326.98
D946	R946	6610.3	-224.3	1330.65
R947	D946	6610.3	-224.3	1326.97
т948	R947	6675.6	-213.4	1333.28
R949	т948	6758.5	-209.0	1329.42
т950	R949	6830.3	-211.5	1332.90
R951	т950	6934.9	-208.8	1328.48
т952	R951	7009.5	-211.4	1332.46
R953	т952	7103.2	-208.9	1327.89
т954	R953	7172.4	-208.3	1332.14
R955	т954	7277.5	-197.3	1327.50
т956	R955	7351.7	-182.2	1331.45
R957	т956	7448.7	-148.8	1326.29

BOLT TOP

1324.12

BOLT TOP

1330.65

.

т958	R957	7521.4	-117.2	1330.24		
R959	т958	7611.3	-63.2	1324.74		
т960	R959	7666.5	-21.6	1328.41		
R961	т960	7734.7	42.0	1322.85		
т962	R961	7784.0	96.8	1326.33		
R963	т962	7841.7	172.0	1319.92		
т964	R963	7879.8	235.4	1325.48		
R965	T964	7914.6	315.5	1318.34		
T966	R965	7940.4	379.4	1320.23		
R967	T966	7966.9	450.0	1312.67		
T968	R967	7994.9	519.5	1313.77		
R969	T968	8025-6	599.3	1305.40		
T970	R969	8051.3	668.2	1306.56		
R971	T970	8081.1	743.9	1298.05		
ボタブク	R971	8105.8	811.7	1299.27		
D973	TQ72	8132.6	881.5	1291.68		
mg71	D973	8158 5	948.9	1292.94		
197 1 0075	ma74 '	8190 1	1023 4	1284.71		
R975 m076	197 1 D075	0170.1 0217 0	1023.4	1285 96		
1970	R975 m076	0217.9	1162 6	1277 81		
K3// m079	1970 D077	0250.5	1227 9	12778 92		
1978	R3// m070	0230 0	1203 3	1270.52		
R979	1970	0330.9	1363.3	1270.33		
1980 D001	K9/9 m000	03/9.0	1407 7	12/1.34		
K981	1980	0420.2	1427.7	1203.00		
T982	R981	8470.9	1400.0	1205.20		
R983	T982	8527.0	1546.7	1250.54		
T984	R983	85//.8	1600.6	1257.80		12/0 52
\$985	1984	8593.5	1593.8	1249.30	DT4 PIRITE	1249.52
R986	T984	8637.1	1654.0	1249.29	•	
T987	R986	8691.7	1700.6	1250.03	551	1040 50
R988	T987	8730.7	1709.3	1240.58	BPI (Dm4	1243.39
H900	D91	3805.2	2054.2	1224.71	DS1/DT4	1223.19
н901	Н900	3778.9	2054.9	1228.71		1001 01
H902	H901	3756.3	2052.1	1228.71	DS10/DL9	1231.01
					CEIL	1240.11
					DL16/DS16	1240.11
					F (BD)	1226.91
н903	н902	3729.9	2058.7	1232.71	CEIL	1238.66
					DL15/DS15	1238.66
					F (BD)	1231.11
					DS13/DL12	1235.61
					DL13/DS13	1235.91
					DL14/DS14	1236.66
н904	н903	3710.9	2061.7	1232.71	CEIL	1238.21
					DL15/DS15	1238.21
					DS10/DL9	1229.89
					F (BD)	1227.21
н905	н904	3678.9	2066.2	1227.71	F (BD)	1223.71
н906	н905	3662.9	2062.4	1227.71	DS10/DL9	1229.61
					F (BD)	1222.71
D906	н906	3662.9	2062.4	1227.51	DOT	1227.51
н907	н906	3618.1	2071.9	1227.71	CEIL	1235.01
		•			DL14/DS14	1235.01
					DS10/DL9	1228.76
					F (BD)	1223.21

1999 BAR BAR

• - -

Com

Ń

MYSTERYL

(

STA	FROM	EAST	NORTH	VERTICAL		FEET
н908	н907	3592.5	2075.1	1228.71	CEIL DL14/DS14	1234.81 1234.81
					F (BD)	1228.21
					RED SH	1228.11
H909	н908	3546.4	2080.0	1230.71	CEIL	1234.21
					DL14/DS14	1234.21
		-		1000 51	F (BD)	1229.71
H910	н909	3497.0	2086.9	1230.71	CEIL	1231.46
					DLIZ/DSIZ	1231.46
	2010	3447 0	2002 0	1000 71	F (BD)	122/./1
HATT	HAIO	344/.9	2093.0	1229./1		1230.91
						1230.91
					נעק) א נעקענט	1220.01
11010	2011	3300 0	2097 2	1220 71	CFIL	1225.01
H912	H911	3399.0	2037.2	1223.11		1230.21
				• •	F(BD)	1226.31
HO13	H012	3371.2	2099.7	1228.71	CETL	1229.81
11913	11712	557102	203317	12201/1	DL12/DS12	1229.81
					F (CLAY)	1227.31
H914	н913	3326.1	2104.4	1227.71	CEIL	1229.01
					DL12/DS12	1229.01
					F (CLAY)	1225.91
н915	н914	3322.9	2104.6	1226.71	CEIL	1227.71
					F (CLAY)	1224.31
Н916	н915	3316.5	2105.8	1224.71		
H917	Н916	3282.0	2107.6	1224.21	C (BOXWK)	1224.91
					F (MUD)	1223.51
H918	H917	3277.0	2108.1	1224.21	C=SHELFST	1225.61
					F (CLAY)	1224.21
Н919	Н918	3277.0	2108.1	1227.61		
н920	Н919	3227.3	2118.7	1227.61	CEIL	1229.61
					DL14/DS14	1229.61
			•		F (BD)	1225.81
		2100.0	2122 5	1007 61	SIDE F	1223.01
H921	H920	3188.0	2123.5	1227.01		1220.00
					DTT4/D214	1220.00
					F (BD) North F	1223 61
10000	PO21	2156 2	2126 0	1227 61	CETL	1228.61
N922	N921	3130.2	2120.0	1227.01		1228.61
HO 23	H922	3132.0	2131.6	1225-61	CETL	1226.61
11725	11722	010210	220210		DL12/DS12	1226.61
					WATER LEV	1225.21
н924	н923	3130.1	2132.0	1226.61	CEIL	1228.11
					DL14/DS14	1228.11
н925	н924	3099.1	2138.9	1226.61	CEIL	1229.21
					DL16/DS16	1229.21
		•			DL14/DS14	1228.11
					F (BD)	1226.61

DEEP F

1224.11

Н926	H925	3063.6	2147.1	1227.61	CEIL DL16/DS16	1229.61 1229.61
					F (BD)	1227.01
н927	н926	3047.5	2151.6	1227.61	CEIL	1229.51
					DL16/DS16	1229.51
					DL15/DS15	1228.76
					F (BD)	1226.21
н928	н927	2997.5	2155.5	1226.61	CEIL	1227.21
					DL14/DS14	1227.21
					F (CLAY)	1223.41
н929	н928	2977.6	2157.2	1226.61	CEIL	1227.11
					DL14/DS14	1227.11
					F (RST)	1223.61
D929	Н929	2977.6	2157.2	1225.73	+ ON WALL	1225.73
н850	D873	58.2	-327.7	1242.41		
H851	н850	71.9	-340.7	1237.41		
н852	Н851	79.1	-334.9	1237.41	CEIL	1246.31
	•				DL27/DS27	1238.98
					F (BD)	1233.41
н853	н852	94.9	-339.1	1234.41	F (BD)	1230.41
н854	н853	105.0	-344.0	1227.41	F (BD)	1226.71
н855	н854	121.3	-345.7	1227.41	F (BD)	1222.91
н856	н855	126.6	-350.0	1223.41	CEIL	1226.01
				· · · ·	F (BD)	1219.41
н857	н856	131.3	-348.6	1220.41	CEIL	1222.71
					F (BD)	1215.91
н858	н857	137.3	-349.4	1216.41	CEIL	1222.71
					DL14/DS14	1222.71
					DL13/DS13	1222.21
			244 4	1010 41	F (BD)	
H859	H858	141.7	-344.4	1212.41		1211.51
		146 0	205 7		FLOOR	1200.91
H860	H82A	146.2	-325.7	1211.41		1214.31
						1206 01
	1060	101 0		1011 41	CETL	1214 11
HSOT	H860	191.0	-332.1	1211.41		1214.11
						1206.81
1196 2	0061	241 2	-337 3	1211 41	CETL	1213.41
H002	HOOT	241.5	- 337.5	TCTT + 17		1211.71
					DS3/DL2	1210.66
					DS2/DL1	1209.91
				•	DS1/DT4	1209.31
					F (MUD)	1206.91
H863	H862	278.0	-340.5	1211.41	CEIL	1213.51
11005	1002	27010	0.000		DL6/DS6	1213.51
					DS1/DT4	1209.41
					SHELF TOP	1210.11
				·	F (MUD)	1206.91
D863	н863	278.0	-340.5	1211.41	+ ON WALL	1211.41
н864	D863	287.1	-325.3	1210.41	CEIL	1212.76
					DS4/DL3	1210.86
		•			F (MUD)	1205.81
н865	н864	327.5	-294.3	1210.41	CEIL	1211.91
					DL5/DS5	1211.91

·

•

Ć

(

						DS3/DL2	1210.01
						FLOOR	1205.91
	н866	н865	368.7	-264.4	1210.41	CEIL	1213.41
1						DS3/DL2	1210.96
						F (SAND)	1206.91
	н867	н866	403.8	-242.5	1210.41	CEIL	1215.21
						SHELF TOP	1208.21
						DS1/DT4	1209.76
						FLOOR	1206-21
	D868	н 867	403.8	-242.5	1209.26	BASIN TTP	1209.26
	н869	H867	418.4	-234.0	1210.41	CETL	1214.71
							1209 56
						SHELE TOP	1209.30
						F (CLAN)	1200.14
	H030	PQQ	4084 0	2153 7	1220 03	r (CLAI)	1207.01
	11930		4004.0	2133.1	1229.93	CRAMP CEIL	1231.73
						DT9/D28	1231.73
			4000 0	0160 0	1000 40	FLOOR	1229.33
	H931	H930	4090.3	2169.0	1229.43	CEIL	1230.33
						DL7/DS7	1230.33
						F (BD)	1227.63
	н932	Н931	4089.7	2171.7	1228.83		
	н933	н932	4090.5	2172.4	1228.83		
	н934	н933	4090.9	2173.4	1228.23		
	н935	н934	4091.4	2188.9	1227.73	CEIL	1230.23
						DL7/DS7	1230.23
						LOW CEIL	1228.23
						HIGH CEIL	1230.88
1						DL8/DS8	1230.88
						F=BD+CLAY	1226.98
	н936	н935	4098.7	2193.4	1228.73	CEIL	1233.13
						DL7/DS7	1230.08
						FLOOR	1228.43
	H937	н936	4103.1	2199.0	1229,73	FLOOR	1226.73
	H938	н937	4112.1	2201.9	1230-33	1 2001	12200170
	н939	н938	4144.4	2195.3	1231.63	0.10/DI.9	1223 53
	11999	11990	171101	2233.3	1201.00	ענע (סבט פ	1007 13
	4940	u030	A17A 6	2226 1	1221 63		172/ 02
	H940	пэээ	41/4.0	2220.1	1231.03	LOW CEIL	1000 50
						TOM CEIT	1232.33
							1232.53
			41.00.0	0000 C	1001 60	F=BD+CLAY	1227.13
	H941	H940	4193.3	2239.6	1231.63	DS10/DL9	1233.98
						F (BD)	1230.63
	H942	H941	4198.2	2243.8	1233.63	_	
	н943	н942	4211.4	2244.2	1233.63	DL9/DS9	1233.78
						F (BD)	1231.13
	D943	н943	4211.4	2244.2	1231.26	SM TOP	1231.26
	н944	н943	4215.0	2252.8	1232.53	DL8/DS8	1233.98
						F=BD+CLAY	1228.13
	н945	н944	4249.8	2287.0	1229.33	CEIL	1233.06
						DL8/DS8	1233.06
						F (CLAY)	1228.33
	н946	н945	4231.8	2297.4	1230.03	CEIL	1231.63
			•			DL7/DS7	1231.63
						F=BD+CLAY	1227.73
ί.	D947	н946	4231-8	2297-4	1229.91	+ ON WAT.T.	1229,91

Ć

н948	н946	4247.1	2309.2	1228.53	CEIL DL5/DS5	1229.83 1229.83
					F (CLAY)	1226.93
н949	н948	4267.4	2310.8	1227.63	CEIL	1230.23
					DL5/DS5	1230.23
					DS1/DT4	1226.66
					F (CLAY)	1225.63
н950	н949	4282.7	2319.1	1227.63	CEIL	1230.88
					DL:6/DS6	1230.88
					F (CLAY)	1226.83
H951	н950	4293.9	2325.2	1230.63	CEIL	1232.08
					DL7/DS7	1232.08
					F=BD+CLAY	1229.63
Н952	Н951	4329.5	2358.3	1231.03	CEIL	1232.93
					DL8/DS8	1232.93
					F (CLAY)	1229.13
					F SLOT	1216.03
Н953	н952	4350.6	2366.6	1232.03	CEIL	1233.23
					DL9/DS9	1233.23
					F (CLAY)	1231.53
н954	н953	4373.5	2354.5	1231.03	PIT FLOOR	1210.63
				· · · · ·	BD/SED	1231.43
D954	н954	4373.5	2354.5	1230.54	SM TOP	1230.54
D955	н954	4373.5	2354.5	1233.94	CEIL DOT	1233.94
н955	D947	4208.5	2295.9	1229.91	CEIL	1231.11
					DL7/DS7	1231.11
н956	Н955	4204.1	2297.4	1225.91	DS1/DT4	1226.26
					F (CLAY)	1220.61
H957	н956	4198.3	2297.9	1219.91	CEIL	1222.21
					FLOOR	1218.51
н958	н957	4172.5	2302.4	1219.91	CEIL	1221.11
				•	BP	1221.11
					BP1	1219.51
				1018 01	WAVY BP	1218./1
н959	н958	4158.3	2305.2	1217.91	CEIL	1220.31
						1220.31
					BPI	1219.21
		43.45.3	0001 6	1015 01	FLOOR	1212.51
H960	H959	4147.1	2301.6	1215.91	CEIL	1220.21
					BPL B (CINV)	1219.11
		1000 0	0000 0	1010 01	r (CLAI)	1210.71
H961	Н960	4098.0	2309.8	1213.91	LTT LUG	1219.01
					BFI (CLAV)	1210.41
		4070 0	1212 2	1212 01	CETL	1219.31
H962	H961	40/9.8	2313.2	1213.91		1219.01
					FLOOP	1210.61
DOCO	11060	4070 9	2212 2	1216 46	ΔΡΡΟΜ ΦΤΡ	1216.46
D962	H962	4079.8	2313.2	1013 01	ANTON III	
H963	H962	4070.9	2000.0 0910 0	1213.01	CET.	1218.41
н964	нурз	4000.4	2342.2	1613091	FLOOR	1210-81
TOCE	110 <i>6</i> 4	1057 7	3363 3	1211 61	CETL	1215.61
сосп	N704	4037+7	2302.2		FLOOR	1209.61
U066	NOCE	4053 0	2374 1	1211.61	CEIL	1216.51
0060	C06U	4033+0	231701	*******	FLOOR	1210.86

a service and the service of the service of

(

Н967	Н966	4043.5	2390.0	1213.61	CEIL	1215.91
					FLOOR	1210.91
н968	н967	4016.4	2381.9	1211.61	CEIL	1215.21
					FLOOR	1210.71
Н969	н968	4002.5	2378.3	1211.61	CEIL	1213.61
					FLOOR	1210.41
н970	Н969	3994.1	2381.6	1211.61	CEIL	1213.61
					F (CLAY)	1210.61
H971	Н970	3976.4	2384.2	1211.61	CEIL	1213.61
		2000 5	000C 7	1011 61	F (CLAY)	1210.61
H972	H971	3960.7	2386.7	1211.01	CEIL	1213.61
11072	11070	2041 0	2200 7	1011 61	F (CLAY)	1210.51
H9/3	H972	3941.0	2300.1	1211.01	EIL F (CLAY)	1214.11
1107 <i>1</i>	4073	3925 8	2391 7	1211 61	CELL	1210.51
19/4	11975	5525.0	2371.7	1211.01	F (CLAY)	1210.41
H975	H974	3908.4	2394.7	1211.11	CEIL	1213.21
11373		0,0001	202.00		F (CLAY)	1209.81
н976	н975	3898.2	2397.6	1210.61	CEIL	1213.41
					F (CLAY)	1209.51
н977	н976	3888.6	2401.8	1210.61	CEIL	1213.81
					BP	1213.66
					F (CLAY)	1207.11
н978	н977	3880.2	2401.8	1207.61	C = BP	1213.41
					BP	1209.26
					FLOOR	1203.41
D978	н978	3880.2	2401.8	1209.21	WALL DOT	1209.21
н979	н978	3858.0	2404.6	1207.61	CEIL	1212.71
					BP	1209.11
		0043		1000 61	F (CLAY)	1204.21
н980	H979	3841.3	2399.0	1208.61	CEIL	1212.91
					BP	1208.91
	7000	2024 0	2402 0	1200 61	FLOOR	1204.41
H981	H980	3024.0	2403.9	1209.01	BD	1208 71
					FLOOR	1204.81
H082	H981	3776.8	2411.8	1209.61	CEIL	1213.31
11702	njor	577010		2007002	BP (POOR)	1208.36
					BP	1212.56
					F (CLAY)	1204.51
н983	н982	3727.1	2417.1	1209.61	CEIL	1212.31
				*	BP	1211.81
					F (CLAY)	1205.01
н984	н983	3697.8	2420.4	1209.61	CEIL (BP)	1212.31
					BP	1211.46
					MUCK TOP	1206.51
					F (CLAY)	1205.11
н985	н984	3676.9	2424.8	1209.61	CEIL (BP)	1212.01
					BP (WAVY)	1211.06
			0.410.0	1000 61	FLOOR	1205.31
н986	H982	3642.1	2412.9	1503.01	CETT MARA DD	1210 71
		•			WAVI Dr DD	1210./1
					Dr R=QTI.M	1204 91
1007	200 2	3634 3	2412 5	1209 61	CETT.	1211 76
N 0 C N	n 900	3024.2	6716 J	1202001		

•

- in the second start for the second s

Ć

(

						BP	1211.54
						WAVY BP	1210.51
						F (SAND)	1205.01
	н988	H987	3614.5	2412.6	1209.61	CEIL	1211.91
						BP	1211.41
						WAVY BP	1210.51
						FLOOR	1205.01
	н989	н988	3591.1	2416.8	1209.61	CEIL	1211.71
						BP	1211.61
						BP	1210.97
						WAVY BP	1210.16
						MUCK TOP	1207.11
						FLOOR	1205.01
	н990	н989	3577.0	2417.6	1207.61	CEIL	1212.81
						BP2	1211.21
						BP1	1210.81
						WAVY BP	1210.11
						F (STREAM)	1203.11
	н991	н990	3528.2	2425.4	1208.61	C=BP+PYRIT	1213.61
					· ·	BP	1212.25
						BP	1211.81
						BP	1211.41
						BP	1211.01
						BP	1210.31
						WAVY BP	1209.31
						F (STREAM)	1204.81
	H992	H991	3481.6	2431.5	1209.61	CEIL	1212.71
						BP	1211.81
	·					BP	1211.36
						BP	1210.41
						BP	1209.91
						WAVY BP	1209.01
						F (STREAM)	1206.71
	нааз	H992	3463.5	2436.2	1209.61	CEIL	1213.61
	11755		010010			CONTACT?	1211.66
	•			·		WAVY BP	1208.96
·						F (STREAM)	1206.96
	наал	H003	3452.2	2424.7	1211.61	CEIL	1214.91
	11774	11999	515212			BP+SHALE	1214.51
						BP+SHALE	1214.08
						BP+SHALE	1214.01
						BP+SHALE	1213.71
						BP+SHALE	1213.21
						BP+SHALE	1212.94
						MAJOR BP	1211.11
						RP	1210.26
						BP	1209.71
						WAVY RP	1208.91
						F (STREAM)	1207.71
	U00 E	400 <i>1</i>	3433 0	2427 A	1211.61	CEIL	1213.56
	כלבח	NJ74	J7JJ•4	676/07		MAJOR BP	1211.11
						F (STREAM)	1207.91
	U00 C	1005	3440 2	2438 6	1211.61	CEIL	1213.91
	n990	1999	J77U+4	2730+V		MAJOR BP	1211.01
						F (STREAM)	1208.21

Н997	н996	3425.0	2467.2	1210.11	CEIL MAJOR BP F (STREAM)	1213.21 1210.74	
D997 END OF	H997 FILE	3425.0	2467.2	1213.21	CEIL DOT	1213.21	

.

·

.

•

•

**

• •

Picnic area across river from Mystery I:

X (ft)	forward time (msec)	reverse time (msec)
0	0	46.5
5	4.37	
10	8.79	42.9
15 ·	13.32	-
2 0	19.7	39.2
25	23.6	39.2
30.	28.6	39.1
40	28.8	41.7
50	32.1	38.1
60	40.0	37.4
70	40.0	30.4
80	40.2	30.0
90	41.8	24.1
100	44.2	. 19.2
110	44.0	7.1
120	46.6	0

At west end of footbridge, extending 120 feet to north (azimuth 350 deg).

v1 = 1050 ft/sec (dry sediment).

v2 = 11,770 ft/sec (limestone).

Depth to bedrock approx. 18 ft.

Irregular bedrock surface.

- F

Arrivals were indistinct in reverse shot.

2.

(1

1.

From west end of footbridge, extending 120 ft to west (azimuth 270 deg):

X (ft)	forward time (msec)	reverse time (msec)
0	0	49.0
10	8.58	49.0
20	21.8	49.6
30	27.1	49.6
40	30.1	47.5
50	31.7	44.4
60	36.1	43.2
70	39.9	35.3
80	39.0	34.9
90	39.0	34.9
100	39.8	28.9
110	40.7	15.7
120	42.5	0

v1 = 820 ft/sec (dry sediment).

v2 = 7150 ft/sec (weathered bedrock?).

Depth to bedrock approx. 10 ft?

Slight bedrock slope toward west.

3. Continuation of #2 toward west:

X (ft)	forward time (msec)	reverse time (msec)
0	0	52.3
10	8.8	52.7
20	18.0	50.7
30	26.4	49.2
40	35.7	48.7
50	45.5	47.0
60	46.1	45.8
70	47.1	45.3
80	49.9	35.6
90	49.4	26.4
100	49.5	17.4
110	50.1	
120	51.1	0

v1 = 1110 ft/sec (dry sediment) v2 = 9900 ft/sec (bedrock) Depth to bedrock = 23 ft.

Slight bedrock slope toward east.

Very little relief on bedrock.

4.

Eastward from picnic grounds road, to 20 ft from western river bank (azimuth 70 deg), 250 ft south of ford (now bridge) over river:

X (ft)	forward time (msec)	reverse time (msec)
0	0	45.9
10	8.9	45.1
20	17.6	43.3
30	26.5	41.5
40	35.7	39.1
50	39.2	38.1
60	. 42.1	33.6
70	41.2	25.8
80	43.1	
90	43.1	7.4
100	45.9	0

v1 = 1160 ft/sec (dry sediment).

v2 = 8450 ft/sec (bedrock).

Depth to bedrock 20 ft.

Little relief on bedrock surface.

Bedrock slopes gently toward east.

X(ft)	forward time (msec)	reverse time (msec)
0	0	41.9
10	8.5	42.2
20	17.6	40.6
3 0	26.5	. 39.4
40	29.6	42.0
50	32.1	37.2
60	41.8	35.0
70	40.1	2 6.6
80	41.4	17.6
90	40.1	8.6
100	41.2	0

v1 = 1150 ft/sec (dry sediment). v2 = 13,300 ft/sec (limestone).

Some scatter in bedrock arrivals.

Depth to bedrock approx. 20 ft.

6.

5.

Parallel to western boundary of Park, along faint road, azimuth 0 deg, on low terrace, from southern edge of patch of woods toward Walnut Cave:

X (ft)	forward time (msec)	reverse time (msec)
0	0	-
10	13.2	40.5
20	17.5	38.4
30	23.9	37.8
40	26.7	36.6
50	32.8	32.2
60	41.8	27.2
70	43.3	23.6
80	51.0	17.8
90	52.0	8.4
100	51.8	0

v1 = 1450 fl/sec. (dry sediment). v2 = 12,800 fl/sec (limestone). Depth to bedrock 23 fl. Forward arrivals indistinct.

Ter

7.

(and

Ten feet from river, parallel to west bank of river, starting 30 feet from ticket office, directly across from Mystery I entrance, azimuth 190 deg.

X (ft)	forward time (msec)	reverse time (msec)
0	0	43.3
5	7.35	
10	12.5	37.1
15	17.5	
20	• 21.3	37.1
25	25.9	
30	31.1	38.3

35	5	31.3	
40)	35.3	34.9
4	5	40.0	
50)	44.3	30.2
60		50.5	27.2
70)	53.1	2 6.3
80)	55.1	2 0.6
90)	55.1	11.1
10	00	57.8	0

Great amount of scatter. Depth to bedrock apparently >20 ft.

8.

From southern end of #7, extending toward west (azimuth 280 deg), starting 50 ft from west bank of river:

X (ft)	forward time (msec)	reverse time (msec)
0	0	39.4
10	9.1	39.1
2 0	18.0	38.2
30	25.9	36.4
40	30.6	38.1
50	31.5	35.5
60	32.9	32.7
70	34.3	27.3
80	36.8	18.1
90	38.9	8.9
100	41.6	0

v1 = 1130 ft/sec (dry sediment).

v2 = 7700 ft/sec (weathered bedrock).

Depth to bedrock 17 ft. on west end, 11.4 ft on east end. Bedrock slopes toward west.

9.

In Grabau Quarry parallel to west wall, 25 ft from wall, Stewartville Formation in floor of quarry:

X (ft)	forward time (msec)
0	0
5	2.96
10	5.09
20	8.57
30	13.45
50	21.3

Apparent velocity = 2460 ft/sec. Interpretation not clear.

10.

Southeast of Grabau Quarry on dirt road, extending southward across dry bed of South Branch of Root River:

X (ft)	forward time (msec)	reverse time (msec)
0	0	
10	• 4.4	
20	7.3	
30	10.7	

40	15.9	readings obscure
50	21.5	
60	23.3	
70	26.9	
80	31.1	
90	31.3	19.4
100	34.2	13.7
110	35.0	5.3
120		0

Reverse shot gave indistinct arrivals beyond 30 ft.

v1 = 2400 ft/sec (compact or moist sediment).

v2 = 7270 ft/sec (weathered bedrock).

Depth to be drock = 27 ft.

11. Parallel to dry bed of South Branch, on south side, extending west, in pulloff 100 feet south of dry bed:

X (ft)	forward time (msec)	reverse time (msec)
0	0	38.8
10	6.0	35.6
20	13.0	35.6
30	23.0	34.6
40	28.2	34.2
50	32.2	34.9
60	33.9	34.8
70	34.9	34.8
80	36.8	31.1
90	38.2	25.6
100	38.9	16.9
110	43.3	8.1
120	45.2	0

v1 = 1300 ft/sec (dry sediment).

v2 = high limestone velocity (actual value not clear).

Depth to bedrock approx. 19 ft.

12.

Average slope on bedrock about 5.5 deg to west (in line of traverse).

Moderate relief on bedrock surface.

Almost directly over Garden of the Gods in Mystery II, south of driveway, extending westward just north of fence line across driveway from flagged stake (about 100 feet west of gate to Mystery II driveway):

X (ft)	forward time (msec)	reverse time (msec)
0	- 0	43.4
10	9.1	43.5
20	18.7	42.8
30	27.5	42.3
40	36.4	41.0
50	40.5	36.6
60	43.7	35.5
70	44.4	27.1
80	• 44.9	18.2
90	45.6	9.5
100		0

v1 = 1110 fl/sec (dry soil and sediment). v2 = 16,570 fl/sec (limestone). Depth to bedrock = 22 ft. Rather uniform bedrock surface.

13. Extension of #6 toward north along faint dirt road over Walnut Cave:

X (ft)	forward time (msec)	reverse time (msec)
0	0	***
5	7.2	
10	9.18	25.9
20	14.1	24.8
30	18.4	24.5
40 ·	21.2	22.4
50	22.5	22.6
60	27.4?	21.3
70	25.6	20.1
80	26.5	17.4
90	30.1	9.0
95		4.5
100	31.7	0

v1 = 1160 ft/sec (dry sediment).

v2 = 8860 ft/sec (bedrock).

Depth to bedrock about 10 ft. over Walnut Cave.

Irregular bedrock surface.

14.

Perpendicular to #13, from a point 15 ft south of southern end of #13, extending west-southwest across field:

X (ft)	forward time (msec)	reverse time (msec)
0	0	35.2
5	4.1	
10	8.7	33.7
20	17.5	33.4
30	24.0	33.9
40	24.0	32.0
50	26.7	3 0.6
60	27.0	2 9.6
70	29.4	25.7
80	32.2	20.1
90	34.2	9.0
95		5.8
100	35.1	0

v1 = 1060 ft/sec (dry sediment).

v2 = 9300 ft/sec (bedrock).

Depth to bedrock 10.7 ft at east end, 14.4 ft on west end.

Bedrock surface rather flat; land rises about 3.5 degrees toward west.

15.

Continuation WSW from western end of #14:

X (ft)	forward time (msec)	reverse time (msec)
0	0	
10	9.1	40.0
20	22.9	37.9
30	32.0	37.0
40	36.1	36.8
50	36.3	29.8
60	37.3	26.7
70	39.0	26.0
80	43.3	21.4
90	44.2	7.9
100	45.1	0

v1 = 906 (loose dry sediment).

 $v_2 = 4400$ ft/sec (weathered bedrock?).

Great amount of scatter: irregular bedrock surface.

16. Continuation WSW from western end of #15:

X (ft)	forward time (msec)	reverse time (msec)
0	0	34.9
10	10.2	35.8
20	21.6	33.0
30	26.1	33.8
40	27.7	31.5
50		30.7
60	28.8	29.9
70	29.8	27.2
80	32.9	22.0
90	33.0	9.7
100	35.0	0

v1 = 910 ft/sec (dry, loose sediment or soil). v2 = 8400 ft/sec (bedrock). Depth to bedrock 11 ft. Rather uniform bedrock surface.

17. Continuation WSW from western end of #16:

X (II)	forward time (msec)	reverse time (msec)	
0	0		(wind interference)
10	8.8		
20	21.6	•••	
30	26.8	31.5	
40	28.6	31.2	
50	30.6	31.3	
60	34.0	31.9	
70	34.5	27.2	
80	• 34.7	17.9	
90	36.0	8.8	
100	36.4	0	

v1 = 1030 fl/sec (dry sediment).
v2 = about 15,000 fl/sec (limestone).
Depth to bedrock about 12-15 fl.
Land rises gently toward west, but bedrock surface is rather flat.

18.

Continuation WSW from western end of #17 to edge of woods, at a relatively high part of field:

X (ft)	forward time (msec)	reverse time (msec)
0	0	45.5
10	8.7	45.5
20	18.1	45.8
30	26.4	45.6
40	32.0	45.2
50	35.2	·
60	37.4	35.5
70	39.7	26.6
80	42.3	17.9
90	43.2	8.6
100	44.1	0

v1 = 1130 fl/sec (dry soil or sediment).

v2 = indistinct, but high (limestone).

Depth to bedrock approx. 15-20 ft.

APPENDIX 4 -- Location of Samples

List of samples collected for this project. Samples are listed out of numerical order so that those from the same area could be grouped together. See Figure 30 for map of sample locations.

MY SAMPLES	LOCATION + DESCRIPTION
2-4	Grabau Quarry. Bedrock.
8-12, 18, 31	Rubble pile at Mystery I, originally from route to Bomb Shelter, moved to Frozen Falls Pool,
138-151	reexcavated for recent renovations and moved to rubble pile. Shelfstone.
120-122	Seven Springs. Bedrock.
131-135	Old toilet house, speleothems removed from Frozen Falls Pool area during renovations.
218a-218d	Hilltop above Mystery I, Cedar Valley Fm. Bedrock.
93-119	Cliff face at entrance to Mystery I. Bedrock.
137	Moquoketa Fm. Ceiling of Cathedral Room. Bedrock.
13	Turquoise Lake, granular raft debris.
204	Turquoise Lake, pool crust.
30	Turquoise Lake, folia.
225	Across Turquoise Lake, pool fingers, collected by Warren Netherton.
32	Bomb Shelter, flowstone.
216	Bomb Shelter, loose, recrystallized raft cone material.
33	Door-to-Door Route, raft cone material.
34	Door-to-Door Route, loose, raft cone material.
214	Door-to-Door Route, broken stalagmite.
210-213	Door-to-Door Route, flowstone and sediment at iron formation.
35-37	Garden of the Gods, sediment.
16-17	Blue Lake, botryoidal crust broken for trail building.
220-223	Blue Lake, Rugged Cross, for Rich Lively to date.
217	Angel Loop, silt.
38-47	Below the bar. Bedrock.
89-92	Fifth Avenue West. Bedrock.
205	Enigma Pit, projecting burrow.
206	Enigma Pit. <u>Rafinesquina</u> fossil.
49-77	Fifth Avenue. Bedrock.
77-88	
15	Fifth avenue. Weathered bedrock.
6	Just before Dragon Jaw Lake, broken, iron-filled stalactite.
7	Just before Dragon Jaw Lake, broken soda straw.
20	Sugar Lake, granular material in drip cone.
152	Sugar Lake, flowstone over sediment.
200	Dragon Jaw Lake, pool crust.
128	Fireball Falls, broken stalactite.
130	Tar Pits, broken stalactite.
202	Tar Pits, western deep pool, shelfstone.
203	Tar Pits, shallow pool, pool crust.
123-124	Tar Pits, bedrock and silt.
219	Tar Pits, black flowstone
201	Tar Pits, western deep pool, pool crust
125	Lily Pad Lake, shelfstone
126	Lily Pad Lake, pool crust

(

SAMPLE #	DESCRIPTION	INSOLUBLE
		% if measured
	STEWARTVILLE FORMATION	
MY38	23 ft below top of Stewartville. Massive, mottled medium brown, burrowed, dolomitic	
	fossiliferous limestone. Dolomite in burrows is sugary textured. Fossils float in patches	
	of spar.	
MY39	20 ft below top of Stewartville. Massive, black mottled, burrowed, dolomitic limestone.	
	Dolomite in burrows is sugary textured.	
MY40	18 ft below top of Stewartville. Massive, sparry, dolomitic limestone.	
MY41	13 ft below top of Stewartville. Massive, mottled-brown, burrowed, dolomitic, orange	
	limestone wackestone. Dolomite in burrows is sugary textured and weathering out.	
MY42	10 ft below top of Stewartville. Massive, brown-mottled, burrowed, pinkish, dolomitic	
	limestone wackestone. Scattered patches of spar. Dolomite in burrows. Some dolomite is	
	partly altered to calcite. Stylolites.	
MY43	Bed SX1. Resistant, granular, mottled burrowed, medium brown, dolomitic limestone	
	wackestone. Dolomite is dissolved at cave wall.	
MY44	Bed SX2. 1-2 inch thick, friable, granular, orange-mottled burrowed, light gray,	
	dolomitized limestone wackestone. Dolomite in burrows is sugary. Stylolites. Dolomite	
	is partly altered to calcite and is dissolved at cave wall. Spar replaced some fossils.	
MY45	Topmost bed of Stewartville. Resistant, dark brown, mottled, burrowed, dolomitic	
	fossiliferous limestone. Dolomite partly altered to calcite. Dissolved at cave wall. Spar	
	fossils weather outward and make the wall feel gritty. Burrow was recrystallized to spar	
	- (gypsum?) Top of MY45 = Bedding Plane 1, the top of the Stewartville Formation.	
MY46	Bed SX3. Granular, brown "marker bed" sometimes defined as the top of the	
	Stewartville Fm. Marker bed grades laterally into wavy disconformity with up to half a	
	foot of relief. Dolomitized limestone wackestone with iron oxide after pyrite lined spar	
	after gypsum in vugs and cracks. Dolomite is partly assimilated in spar.	
MY47	Topmost bed in Stewartville. Granular, yellow-mottled, dolomitic limestone	
	wackestone, just below bedding plane 1. Bedrock has been brecciated and clasts float in	
	spar after gypsum. Spar is concentrated along joints.	
	DUBUQUE FORMATION	
MY49	Bed DT1. Knobby, orange, dolomitic wackestone. Dolomite is partly altered to calcite	
	and is dissolved at cave wall.	
MY52	Bed DT2. Brown dolomitic wackestone. Dark concentrations of iron and manganese	
	oxides associated with dolomite. Overgrowths on some fossil fragments.	
MY50	Bed DT3. One of several closely spaced, .3 foot-thick, undulose beds. Medium gray	
	dolomitic limestone mudstone and wackestone. Black-mottled iron oxide in dolomite.	
MY53	Bed DT3. One of several closely spaced, 0.3 foot-thick, undulose beds. Massive brown	
	dolomitic limestone wackestone. Dolomite is partly altered to calcite. Overgrowths on	•
	some fossil fragments. Bedding plane 3 is at the top of the sequence of undulose beds.	
MY55	Bed DT4. Light gray, slightly dolomitic limestone wackestone. Black iron oxide.	
	Dolomite is partly altered to calcite and is dissolved at cave wall.	· .
MY54	Bed DT4. Gray, slightly dolomitic limestone wackestone with large balls of iron oxide	
	after pyrite. Dolomite is partly altered to calcite and is dissolved at cave wall.	
MY56	Bed DS1. First significant shale. Shaly, dolomitic limestone.	49%
MY57	Bed DL1. Medium crystalline, light gray-brown dolomitic limestone wackestone.	
	Dolomite is corroded at cave wall.	
MY58	Bed DS2. Calcitic shale. Phosphatic fossil fragments. Iron oxide. Trace glauconite.	57%
MY59	Bed DL2. Gray mudstone to wackestone. Spar replaced some fossils.	

APPENDIX 5	: Description	of Bedrock	Samples	Analyzed	for this	Project
-------------------	---------------	------------	---------	----------	----------	---------

		127
MY60	Bed DS3. First major shale bed. Some dolomite, phosphate and iron oxide.	52%
MY61	Bed DL3. Light brown limestone wackestone. Slightly dolomitic weathering to pores at	
	cave wall. Spar has replaced some fossils. Some iron oxide.	
MY63	Bed DL4. Gray-brown, slightly dolomitic limestone mudstone to wackestone. Dolomite	
	weathers to pores at cave wall. Some iron oxide and phosphate grains.	
MY65	Bed DL5. Slightly shaly, yellow-gray limestone wackestone. Some iron oxide and	
	phosphate grains.	
MY66	Bed DS6. Slightly dolomitic, fissile, shaly limestone wackestone. Phosphate grains,	34%
	some iron oxide.	
MY67	Bed DL6. Slightly dolomitic, unlaminated, brown-gray limestone wackestone. Fe oxide	
MY68	Bed DS7. Unlaminated, shaly, light gray limestone wackestone. Phosphate grains and	46%
	iron oxide.	
MY69	Bed DL7. Massive, yellow-gray, shaly limestone wackestone. Iron oxide.	
[•] MY70	Bed DS8. Dolomitic, shaly, nonlaminated, medium gray limestone wackestone. Iron	52%
	oxide and phosphate grains. Poorly recessed, shaly zone.	
MY71	Bed DL8. Orange-brown, shaly limestone wackestone. Iron oxide and phosphate grains.	
MY72	Bed DS9. Yellow, calcitic shale. Iron oxide and phosphate grains.	65%
MY73	Bed DL9. Slightly dolomitic, shaly gray limestone wackestone. Spar fills voids between	
	grains. Iron oxide and phosphate grains. Dolomite is dissolved next to cave.	
MY74	Bed DS10. Slightly dolomitic, calcitic shale. Iron oxide and large amount of phosphate	49%
	grains. Dolomite looks detrital with corroded edges.	
MY75	Bed DL10. Shaly, medium brown, limestone wackestone. Spar filled some fossils. Iron	
	oxide and some phosphate grains.	
MY76	Bed DS11. Slightly dolomitic, shaly, yellow-gray, fissile, laminated limestone	
	wackestone. Iron oxide and phosphate grains.	
MY78	Bed DS11. Large masses of gypsum and iron oxide from the oxidation of pyrite in shale.	
	Much iron oxide is moldic after euhedral gypsum crystals.	·
MY77	Bed DL12. Shaly, fissile, limestone wackestone with yellow laminae. Iron oxide and	
	phosphate grains	
MY79	Bed DL13. Shaly, brown, limestone wackestone. Iron oxide and phosphate grains. Trace	
	dolomite.	
MY80	Bed DS14. Laminated, slightly dolomitic, calcitic dark brown shale. Iron oxide and	
	some phosphate grains. Candidate for bentonite (still investigating).	
MY81	Bed DS14. Brown finely laminated, calcific shale with fossils, iron oxide, phosphate.	72%
MY82	Bed DL14. Shaly, light brown limestone wackestone. Iron oxide and phosphate grains.	
1.000	Trace dolomite that has dissolved next to cave.	
MY83	Bed DS15. Dolomitic, shaly yellow-gray limestone wackestone. Iron oxide and	
10/04	phosphate grains.	
MY 84	Bed DL15. Slightly dolomitic, shaly, yellow limestone wackestone. Some from oxide and	
10/05	phosphate grains.	
M 1 85	Bed DS10. Inick, gummy dolomitic, calcille, brown massive shale. Iron oxide and	0970
10796	Ded DI 16 Slightly shally light ten limestene unelegating. Trace delemits light and	
101 1 00	and phosphate grains	
10797	Ded DS17 Delemitic shely unlemineted limesters mudsters. Deserbets grains	770/
1/110/	Delomite is altered to calcite	///0
MV80	Red DI 17. Shely, gray, limestone waskestone, Iron ovide and some phosphoto grains	
1/1 1 00	Trace dolomite	
MV02	Red 19818 Medium gray brown shale. Trace delomite. Few large fassil fragments	79%
141 1 7 3	Phosphate	1770
	I v noobrane.	1

		128
MY94	Bed DS19. Dolomitic, shaly, medium gray-brown limestone wackestone. Iron oxide and	
	phosphate grains.	
MY95	Bed DL19. Dolomitic, shaly, brown-gray wackestone. Iron oxide and phosphate grains.	
MY96	Bed DS20. Dolomitic, shaly, light brown limestone wackestone. Iron oxide.	
MY90	Bed DS20. Gummy, dolomitic, yellow-brown, calcitic shale. Strong limonitic stain near	58%
	base. Dolomite is altered to calcite. Iron oxide and phosphate grains.	
MY91	Bed DL20. Dolomitic, yellow, calcitic shale. Some fossils contain spar.	48%
MY97	Bed DL20. Brown, fossiliferous limestone wackestone. Trace dolomite and shale.	
	Dolomite is dissolved to pores. Iron oxide and spar bind clusters of fossils.	
MY92	Bed DS21. Soft, yellow-gray, massive, calcitic shale with infrequent laminations of shell	68%
	fragments and iron oxide. Phosphate grains and trace dolomite.	
MY99	Bed DL21. Shaly, white, massive limestone wackestone. Iron oxide.	
MY100	Bed DS22. Dolomitic, calcitic, dark gray shale. Iron oxide and phosphate grains.	72%
2 - 244 	Concentration of fossil fragments at shale/limestone contact.	
MY101	Bed DL22. Shaly, yellow-orange, limestone wackestone. Iron oxide and phosphate	
, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	grains. Burrow filled with spar (fossil floating in spar) after gypsum.	
MY102	Bed DS23. Dolomitic, dark gray, calcitic shale. Iron oxide, phosphate, chitinozoans.	
MY103	Bed DL23. Massive, dolomitic, light brown limestone wackestone. Spar has replaced	
	scattered large fossils. Phosphate.	
MY104	Bed DS24. Dolomitic, thick, dark gray, shaly limestone wackestone. Phosphate grains,	49%
	iron oxide and chitinozoans.	
MY106	Bed DS25. Thick dolomitic, brown, calcitic shale. Large amount of tiny, phosphatic	60%
	fossils. Chitinozoans.	
MY107	Bed DL25. Dolomitic, gray-brown limestone wackestone. Phosphate grains and iron	
	oxide. Some dolomite is altered to calcite.	
MY108	Bed DS26. Dolomitic, shaly, gray to yellow limestone wackestone. Nodules of spar.	37%
	Phosphate grains and iron oxide.	
MY109	Bed DL26. Dolomitic, shaly, brown, limestone mudstone to wackestone. Phosphate	
	grains and iron oxide.	
MYIIO	Bed DL27. Brown shale with flecks of organic material along bedding. Iron oxide and	
10/111	chitinozoans.	000/
MYIII	Bed DS28. Dolomitic, calcitic, dark gray-brown shale. Iron oxide and chitinozoans.	80%
MY112	Bed DL28. Incompetent, dolomitic, shaly, light gray limestone wackestone. Iron oxide,	
10/112	phosphate grains and chitinozoans.	000/
MYIIS	Bed DL28. Dark brown, snaly dolomite. Possils, iron oxide, some phosphate grains and	28%
N/V/114	Cilitinozoalis. Red DI 20. Incompetent brown shally delemite. Sectored feerile. Incombe electore of	· · · · · · · · · · · · · · · · · · ·
111114	fossils competent, brown, shary doronne. Scattered lossns. Inegular clusters of	
MV115	Red DS30 Mottled gray brown shaly dolomite Scattered fossils Iron ovide and	
WI IIJ	chitinozoans. Some dolomite is altered to calcite. This is the last definite shale had at	
	the top of the Dubuque Formation	•
	MAQUOKETA FORMATION	
MY116	Base of Magnoketa Yellow shalv dolomitic limestone wackestone Scattered large	
	fossils. Some phosphate. Some fossils replaced by spar. Undulatory bedding at base	
MY117	3 ft above base of Maguoketa, Dolomitic, calcitic, vellow shale. Some phosphate grains	
	and iron oxide.	
MY118	5 ft above base of Maguoketa, Medium grav, fissile, shalv dolomitic wackestone	
	Phosphate grains and iron oxide.	
MY119	9 ft above base of Maguoketa, Flaggy, medium-thin bedded, burrowed, light tan, shalv	
	dolomitic mudstone. Iron oxide.	

APPENDIX 6: Grain Composition of Bedrock Samples

Point-count results for thin sections of bedrock samples are shown here. "Pores" in the dolomite column represent rhombic pores that were once dolomite but have since dissolved. They were not counted in the percentages. See Figure 2 for exact locations in the stratigraphic column.

And an analysis of the second	Contraction in the second se				
SAMPLE	% SPAR	% CALCITE	% DOLOMITE	% FOSSILS	% NON
		MUD			CARBONATE
MY38 (Sville)	15	10	40	35	1
MY39 "		42	36	21	
MY40 "		24	56	21	
MY41 "		29	50	18	3
MY42 "		42	19	39	
MY43 (SX1)		34	41	25	.5
MY44 (SX2)	3	48	6	42	
MY45 (S'ville)		44	6	41	9
MY46 (SX3)	38	8	30	23	
MY49 (DT1)		7	67	27	
MY 52 (DT2)		22	27	51	
MY50 (DT2)		33	52	15	
MY 53 (DT2)		48	19	33	
MY55 (DT4)		64	pores	34	
MY 54 (DT4)		50	12	38	
MY57 (DL1)		75	pores	25	
MY 58 (DS2)		13	trace	27	60
MY 59 (DL2)		74		26	
MY60 (D\$3)		17	trace	17	67
MY61 (DL3)		81	trace	19	
MY63 (DL4)		47	pores	38	16
MY65 (DL5)		63	trace	7	29
MY66 (DS6)		43	10	13	34
MY67 (DL6)		88		9	3
MY68 (DS7)		25		25	50
MY69 (DL7)		73		9	18
MY70 (DS8)		37	pores	26	37
MY71 (DL8)		62		12	26
MY 72 (DS9)		22		26	52
MY73 (DL9)		68	pores	25	8
MY74 (DS10)		16	trace	38	46
MY75 (DL10)		62		28	10
MY76 (DS11)		45	pores	50	5
MY77 (DL12)		77		12	11
MY79 (DL13)		13		33	54
MY80 (DS14)		6		21	73
MY81 (DS14)		5		24	71
MY82 (DL14)		58		27	15
MY83 (DS15)	•	9 .	9	55	27
MY84 (DL15)		72		16	12
MY85 (D\$16)		40	3	6	51

					130
MY86 (DL16)		70		24	6
MY87 (DS17)		54	trace	3	43
MY88 (DL 17)		64		30	6
MY93 (DS18)		1		2	97
MY94 (DS19)		67	3	15	15
MY95 (DL 19)		54	18	15	13
MY96 (DS20)		16	13	38	34
MY90 (DS20)		33	3	6	58
MY91 (DL20)		69		24	6
MY97 (DL20)		53	pores	45	2
MY92 (DS21)		5		9	86
MY99 (DL21)		74		12	14
MY100 (DS22)		6	3	3	88
MY101 (DL22)		69		16	15
MY102 (DS23)		5	26	13	57
MY103 (DL23)		37	27	36	
MY104 (DS24)		23	14	30	33
MY106 (DS25)		4	6	27	63
MY107 (DL25)		9	8	82	1
MY108 (DS26)		20	9	48	23
MY109 (DL26)		9	45	15	31
MY110 (DL27)				3	97
MY111 (DS28)		3	10	19	68
MY112 (DL28)		26	24	41	9
MY113 (DS29)			55	33	12
MY114 (DL29)			64	16	20
MY115 (DS30)			41	33	26
MY116 (Miketa)	6	45	29	15	5
MY117 "			44	4	52
MY118 "		5	69	18	8
MY119 "			91	1	8

SAMPLE	QUARTZ	ILLITE	MUSCOVITE	CHLORITE	KAOLINITE
MY56	x	x	x		
MY58	x	x	x		
MY60	x		x		
MY66	x	x	x		
MY68	x	x	x		
MY70	x	x	x		
MY72	x	x	x		
MY74	x	x	x		
MY81	x	x	x		
MY85 clay		x		x	x
MY85 coarse	x	x	x	•	x
MY87	x	x	x		
MY90	x	x		x	x
MY91	x	x	x		
MY92	x	x	x		
MY93 coarse	x	x	x		
MY98	x	x	X		
MY100	x	x	x		
MY104	x	x	x		
MY105	x				
MY106 clay	x	x		x	x
MY108	x	x	x		
MY113	x	x	x		
MY131	x		x		
MY137	x	x	x		

APPENDIX 7: Clay Content of Bedrock Samples (from X-ray Diffraction)

APPENDIX 8: X-ray /	Analysis of S	peleothem Sar	nples
---------------------	---------------	---------------	-------

Sample	Calcite, deg. 2-theta	Silica (SiO ₂)	Description
MY8	29.50	2%	needles and blades from chenille spar, Mystery I
MY12	29.50	0	outer bladed crystals on ice, Mystery I
MY13	29.54	0	granular drip cone precipitate on floor of Turquoise Lake
MY14	0	aragonite	wall near Garden of Gods. Bedrock = dolomite
MY16	29.50	0	acicular crust on botryoids
	29.53	0	twinned pyramidal crystals
			Blue Lake pool crust
MY17	29.57	0.	both inner yellow layer and outer layer, Blue Lake acicular pool crust
MY19	29.51	0	tiny bladed crystals on shrub-like stalk
		0	orange acicular crust
-	29.50		Mystery I
MY30	29.52	0	folia, Turquoise Lake
MY32	29.52	0	Flowstone (twinned blades), Bomb Shelter
MY33a	29.52	0	raft cone fragments, Door-to-Door Route
MY33b	29.54	0	raft cone fragments, Door-to-Door Route
MY34	29.56	2%	cave ice from raft cone
			station T62 Door-to-Door Route
MY38	29.54	aragonite	Below the Bar, Stewartville bedrock, Mystery II
MY82	29.50	46%	weathered, yellow bedrock
	29.51	7%	unweathered, gray bedrock
MY86	29.47	5%	Bedrock
MY95	29.50	7%	Bedrock
MY116	29.47	0	Moonmilk on dolomite bedrock
MY129	29.52	0	yellow inside soda straw
	29.58	1%	outer white crust
			Tar Pits
MY131	29.49	12%	limestone bedrock
	29.495	8%	white crust on limestone
MY132	29.45	0	white, chalky crust on stal
	29.46	0	yellow center of stal
			Old Toilet House
MY143	29.52	0	acicular flowstone layer over shrubs
	00.55	10/	shrubs
2.01154	29.55	1%	Mystery 1
MY154	29.52	0	acicular flowstone layer
	29.52	6%	Snruos Mustori I
NOVIEE			Mystery 1
1/11122	29.50	8%	suruus below Howstone
	29.52	U	Mustery I
MW201	20.54	19/	who guyon a starked plates to peoples. The Dite days lake
M11201	29.34	170	subaqueous stacked plates to needles, Tar Pits deep lake
MY202	29.56	1%0	sheristone, vertical momos and silt, far Pits deep lake
MY203	29.575		bouryoidal crust, vertical, stacked momos, 1 ar Pit shallow lake
MY204	29.505	10	chenille spar, bladed to stacked needles, Turquoise Lake

Ű

				133
MY214	29.52	1%	outer edge, stalagmite	
	29.53	0	center, stalagmite	
			Door-to-Door Route	
MY225	29.50	1%	pool fingers, stacked to radiating needles	
			Input side of Turquoise Lake	

APPENDIX 9: Speleothem Ages

Speleothem ages determined by Richard Lively, Minnesota Geological Survey, including measurements made for the LCMR Geology Project, arranged by age from youngest to oldest. See Figure 31 for map of sample locations.

SAMPLE	AGE (ka)	ERROR	SITE DESCRIPTION	
MC28d		(years)	Mystery III have of mud nit east of Fureka Ave	
MC28c	2		Mystery III, base of mud pit, east of Euroka Ave	
MC286	2		Mystery III, base of mud pit, east of Euroka Ave.	
MC280			Mystery III, base of mud pit, cast of Eureka Ave.	
MC28a	0	.4	Mystery III, base of mud pic, east of Eureka Ave.	
MC9	7.7	.4	Mystery I, Bomb Shefter, top of flowstone layer	
MC24	8.6	5	Door-to-Door route, Big Fork, west of entrance to Wind Tunnel	
MC8	9.6	.5	Mystery I, Bomb Shelter, middle layer of flowstone, shrubs	
MC8609	10.3	.6	Mystery III. Just before entrance to second crawl. Small joint on right side of passage going in	
MC1	11.98	1.3	Mystery II, Angel Route	
MC25	12	.4	Door-to-Door route, entrance to Wind Tunnel, Big Fork area	
MC7	12.2	.4	Mystery I, Bomb Shelter, base of thick flowstone overlying gravel deposit, shrubs	
MC29	12.2	.4	Mystery I, main commercial passage about 150 feet west of en- trance to Turquoise Lake	
MC25a	12.3	.7	Door-to-Door route, entrance to Wind Tunnel	
MC1	12.3	.3	Mystery II, Angel Route	
MC1	12.6	.7	Mystery IL Angel Route	
МС25b	12.7	.6	Door-to-Door route, entrance to Wind Tunnel	
MC27	13	.6	Mystery III, Formation Route Creek	
MC1	14.4	.8	Mystery II, Angel Route just east of Carrot Sticks	
MC8603	14.5	.4	Mystery III. Along Helictite route just before boxwork	
MC30	15	.2	Mystery III, above entrance to Helictite Route	
MC1	15.4	1	Mystery II, Angel Route	
MC8503	15.5	3	Mystery II. area beyond Garden of the Gods	
MC8605	16	.5	Mystery III. Boxwork area, after first crawl, and near second	
			crawl; left side going in	
MC1	16.8	3.1	Mystery II, Angel Route	
MC8503	18	.5	Mystery II, area beyond Garden of the Gods	
MC1	19.6	1.3	Mystery II, Angel Route	
MC1	26.2	1.7	Mystery II, Angel Route	
MC8505	34	1	Mystery II, top of side passage, entrance to Garden of Gods area, may not be original location	
MC19d	36	2	Mystery II, west end of 5th Ave.	
MC26a	38	1	Mystery II, 4th Ave., 1/2 to 2/3 distance from Wishing Well	
MC19c	38	2	Mystery II, west end of 5th Ave.	
MC21	41	1	Mystery III, Eureka Ave. entrance of passage going to Rotunda Room	
MY222	49 •	2.4	Mystery II, Blue Lake, top half of uppermost part of more recent flowstone next to lake	
MC8505	57	2	Mystery II, top of side passage, entrance to Garden of Gods area, may not be original location	

			135
МС19b	57	5	Mystery II, west end of 5th Ave.
MC19a	61	5	Mystery II, west end of 5th Ave, growing on top of breakdown,
			covered by newer breakdown
MC222	77.9	3.5	Mystery II, Blue Lake, lower half of uppermost, more recent flow-
			stone next to lake
MC8501	81	4	Mystery II, left side passage off commercial tour just prior to
			Garden of the Gods
D2	85	5	Mystery II, Dome Room, east of Blue Lake
MC5	85	3	Mystery II, west end of 5th Ave.
MY223	89	3.4	Mystery II, Blue Lake, botryoidal calcite below flowstone mound,
			subaqueous.
MC5	93	3	Mystery II, west end of 5th Ave.
MC5	97	4	Mystery II, west end of 5th Ave.
MC5	97	8	Mystery II, dig site opposite Dragon's Jaw Lake
MC13	101	4	Mystery II, layer capping sediment
MC5	101	4	Mystery II, west end of 5th Ave.
MC5	101	5	Mystery II, west end of 5th Ave. dig site
MC5	104	8	Mystery II, west end of 5th Ave. dig site
MC5	104	21	Mystery II, west end 5th Ave. dig site
МС20Ь	106	5	Mystery II, west end of 5th Ave., near Dragon's Jaw Lake
MC17	109	6	Mystery II, 4th Ave.
MC5	113	9	Mystery II, west end of 5th Ave., dig site
MC26b	116	7	Mystery II, 4th Ave., 1/2 to 2/3 of the way from Wishing Well to
			end of passage
MC10a	117	11	Mystery II, Enigma Pit, top of sediment, left side
MC26	119	5	Mystery II, 4th Ave., between Wishing Well and west end
MC18	121	6	Mystery II, 4th Ave., between wishing well and west end
MC8502	121	8	Mystery II, area beyond Garden of the Gods
MC14	122	. 11	Mystery II, Enigma Pit, middle flowstone layer
MC26d	123	5	Mystery II, 4th Ave., 1/2 to 2/3 from wishing well to end of pas-
			sage
MC4hg	124	7	Mystery II, dig site opposite Dragon Jaw Lake
MC3	126	11	Mystery II, west end of 5th Ave., near Dragon Jaw Lake
MC11b	128	6	Mystery II, Enigma Pit, on wall above sediments
MC3g	136	12	Mystery II, west end of 5th Ave. near Dragon's Jaw Lake
MC8504	137	7	Mystery II, base of broken stal on N side at east end of Garlen of
			the Gods before entrance to Beyond Garden of the Gods
MC8601b	138	8	Mystery III. Along Lily Pad Route just up from Helictite Route
MC20a	141	11	Mystery II, west end of 5th Ave. near Dragon's Jaw Lake
MC3c	142	11	Mystery II, west end of 5th Ave. near Dragon's Jaw Lake
MC11a	142	9	Mystery II, Enigma Pit, north side of wall above sediment
MC16	146	10	Mystery II, Enigma Pit, 30 cm below top of sediment
MC16a	147	6	Mystery II. Enigma Pit. 30 cm below top of sediment
MC10b	150	19	Mystery II. Enigma Pit. top of sediment, north side
MC2	151	13	Mystery II. Enigma Pit. embedded upright in flowstone layer
MC5	151	32	Mystery II, west end of 5th Ave. dig site
MC8601a	152	8 .	Mystery III, Lily Pad Rte, west of junction with Helictite Route
MC6	158	10	Mystery II entrance to Dragon's law I ake from ceiling of crawl
MC8601c	158	11	Mystery III Lily Pad Route inst beyond entrance to Helictite Rte
MC4a	161	14	Mystery II. Tar Pits west end of 5th Ave
			I supposed and a set a store of a of a set i state

Ĺ

			136
MY220	179	10	Mystery II, oldest flowstone at mound by Blue Lake, same age as "Mushroom"
MC2a	183	16	Mystery II, Enigma Pit, flowstone
MR1	258	28	Mystery II, pit west of Blue Lake
MY221	>350		Mystery II, Blue Lake, topmost shelfstone on west end of flowstone mound, shrubs
MC3h	>350		Mystery II, west end of 5th Ave. near Dragon's Jaw Lake
MR1	>350 .		Mystery II, next to Blue Lake

(internet

n 1