This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp

January 2011 Status Report

MN Department of Commerce, **Office of Energy Security** B24563 – University of Minnesota

Initiative for Renewable Energy and the Environment

1954 Buford Ave 325 Learning & Enviro Sciences Bldg St. Paul, MN 55108 (612) 626-9553

www.iree.umn.edu

INSTITUTE ON THE ENVIRONMENT

UNIVERSITY OF MINNESOTA Driven to Discover[™]

UNIVERSITY OF MINNESOTA

Twin Cities Campus

Initiative for Renewable Energy & the Environment (IREE) Institute on the Environment 325 Learning & Environmental Sciences 1954 Buford Avenue Saint Paul, MN 55108 iree@umn.edu environment.umn.edu/iree

January 2011 Status Report

MN Department of Commerce, Office of Energy Security B24563 – University of Minnesota

Summary of Contract Allocations

Allocation Type	Number of Projects	Awarded Dollars
Large Grants	8 Projects	\$ 2,145,585.00
Seed Grants	12 Projects	\$ 791,622.00
FY 2009 Admin Costs		\$ 59,793.00
TOTAL		\$ 3,000,000.00

IREE Large Grants

The IREE Large Grant projects selected to receive IREE funding from the Department of Commerce Contract B24563 are listed below. These projects are 2-3 years in duration. First year funding was awarded from the MNDOC contract B24563 additional funding was provided for project through other IREE funding allocations. Large grants are intended as one-time, strategic "venture capital" awards to launch potentially transformative projects in emerging fields of importance for renewable energy and the environment.

Thermochemical Fuels: Solar at Night

PROJECT DETAILS		GOAL
IREE Project #	RL-0001-09	To harvest and store solar concentrated energy via high-
B24563 Funding	\$382,344.00	temperature, thermochemical processes. Faculty and students
Other Funding	\$517,742.00	will collaborate with national and international experts to
Project End Date	6/30/2012	develop processes and reactors that gasify biomass with concentrated solar energy. As a result, the fuel produced
Project Lead	Jane Davidson	during the day could be stored, transported and used
Department	Mech Engineering	where/when it is needed.

Evaluation, Validation & Demonstration of Small-Scale Renewable Energy Systems for Homes & Businesses

PROJECT DETAIL	LS	GOAL
IREE Project #	RL-0007-09	To evaluate small-scale renewable energy systems and
B24563 Funding	g \$304,790.00	become an accredited performance test center. The team will
Other Funding	\$0.00	work to create a business model and to jumpstart the
Project End Dat	e 6/30/2012	infrastructure for a self-sustaining, fee-based center, which can facilitate the testing, validation and demonstration of such
Project Lead	Michael Reese	systems.
Department	UMN, Morris	

Combining Geothermal Energy Extraction and CO₂ Sequestration to Produce Clean, Renewable, Carbon Negative Electricity

PROJECT DETAILS		GOAL
IREE Project #	RL-0014-09	To investigate the feasibility of developing a geothermal
B24563 Funding	\$244,700.00	power plant that generates electricity in low to intermediate
Other Funding	\$255,300.00	heat flow regions (such as Minnesota), while sequestering
Project End Date	6/30/2012	carbon dioxide in the subsurface. This project could reduce climate change caused by human activities while utilizing
Project Lead	Martin Saar	Earth's natural heat flow as an energy source.
Department	Geology & Geophysics	

Laterally Integrated Photovoltaic Systems

PROJECT DETAILS		GOAL
IREE Project #	RL-0019-09	To develop an inexpensive, integrated package using
B24563 Funding	\$403,320.00	holographic concentrator optics to split the solar spectrum
Other Funding	\$396,680.00	and direct each band toward polycrystalline solar cell
Project End Date	6/30/2012	components. This system could reduce the expense and complications of multi-junction cells, mechanical tracking and
Project Lead	Philip Cohen	concentrator optics in current photovoltaic systems.
Department	Electrical and Computer Engr	

Air Pollution Impacts of Conventional & Alternative Fuels: A Spatial and Temporal Life Cycle Analysis Decision Support Tool

PROJECT DETAILS		GOAL
IREE Project #	RL-0026-09	To perform a spatially- and temporally-explicit life cycle
B24563 Funding	\$171,239.00	assessment for several biofuels and the fossil fuels they
Other Funding	\$428,547.00	displace. This research will provide critical new knowledge
Project End Date	6/30/2012	about the costs, benefits and tradeoffs in greenhouse gas emissions and air quality related to biofuel production
Project Lead	Julian Marshall	systems.
Department	Civil Engineering	

Converting Solid Biomass to Hydrocarbon Liquid Fuels

PROJECT DETAILS		GOAL
IREE Project #	RL-0032-09	To develop catalytic reforming techniques for converting
B24563 Funding	\$143,192.00	biomass to hydrocarbon liquid fuels using a thermochemical
Other Funding	\$106,808.00	process.
Project End Date	6/30/2011	
Project Lead	Roger Ruan	
Department	Bioprod & Biosystems Engr	

The following Large Grants have completed the portion of their project that was funded by the DOC B24563 Contract.

Biofuels for the Farm: New Technologies for the Production of Biofuels in Small Systems

PROJECT DETAILS		GOAL
IREE Project #	RL-0004-09	To develop catalytic processes and reactor configurations for
B24563 Funding	\$200,000.00	the conversion of biomass to fuels, small-scale engine
Other Funding	\$400,000.00	technology that can handle significant variations in feedstock
Project End Date	6/30/2012	composition, and process modeling and energy integration approaches for small-scale systems.
Project Lead	Michael Tsapatsis	
Department	Chemistry	

Sustainable Polymers: Tomorrow's Advanced Materials

PROJECT DETAILS		GOAL
IREE Project #	RL-0009-09	To design, prepare and implement advanced polymers from
B24563 Funding	\$296,000.00	biomass for a wide range of applications, and to establish a
Other Funding	\$504,000.00	Center for Sustainable Polymers at the U of M. The team of
Project End Date	6/30/2012	scientists and engineers will lead research projects aimed at developing commercially feasible, pressure-sensitive
Project Lead	Marc Hillmyer	adhesives, toughened plastics and polyurethanes from
Department	UMN, Morris	renewable resources.

Please visit the <u>IREE Projects Database</u> for more information on the Large Grants.

IREE Seed Grants

The IREE Seed Grant projects selected to receive IREE funding from the Department of Commerce Contract B24563 are listed below. These projects are 1-2 years in duration. Funding was awarded from the MNDOC contract B24563. Seed grants are intended to explore the potential for high-risk, high-potential projects that are in the initial stages of development.

Enhanced Biogas Formation from Animal Waste: Evaluation of a New Technology for Increased Biogas Quality and Quantity

PROJECT DETAILS		GOAL
IREE Project #	RS-0006-09	To evaluate the scientific basis for enhanced biogas
B24563 Funding	\$67,716.00	production, as well as improved gas composition produced by
Project End Date	6/30/2011	an anaerobic digester using the Hogen process.
Project Lead	Michael Sadowsky	
Department	Soil, Water & Climate	

Hydrostatic Transmission for Wind Power Generation

PROJECT DETAILS		GOAL
IREE Project #	RS-0008-09	To assess the potential economic and technical advantages of
B24563 Funding	\$57,406.00	using a hydrostatic transmission rather than a mechanical gear
Project End Date	5/30/2011	box for wind power generators.
Project Lead	Kim Stelson	
Department	Mechanical Engineering	

Minnesota Microorganisms for Electrical Biocatalysis: Novel Bacteria from Minnesota Habitats that Use Electrodes to Increase Bioproduct Value and Capture Carbon

PROJECT DETAILS		GOAL
IREE Project #	RS-0013-09	To identify novel bacteria and obtain new models for the study
B24563 Funding	\$70,000.00	of organisms able to link electricity to biological carbon
Project End Date	6/30/2011	capture and biocatalysis.
Project Lead	Daniel Bond	
Department	Microbiology	

Universal Utility Interface for Plug-in Hybrid Electric Vehicles with Vehicle-to-Grid Functionality

PROJECT DETAILS		GOAL
IREE Project #	RS-0025-09	To develop a novel interface between a utility and PHEV
B24563 Funding	\$70,527.00	battery pack in order to demonstrate a complete system with
Project End Date	5/31/2011	bidirectional power flow capabilities.
Project Lead	Ned Mohan	
Department	Electrical and Computer Engr	

ose of transcriptomics to identify Light-Degrading Lizymes in rungi		
PROJECT DETAILS		GOAL
IREE Project #	RS-0028-09	To better understand how lignin is broken down—a process
B24563 Funding	\$75,000.00	that is vital to converting complex feedstocks to biofuel.
Project End Date	3/31/2011	
Project Lead	Steve Gantt	
Department	Plant Biology	

Use of Transcriptomics to Identify Lignin-Degrading Enzymes in Fungi

State Climate Action Planning: Geography of Regional and National Climate and Renewable Energy Policy

PROJECT DETAILS		GOAL
IREE Project #	RS-0034-09	To investigate Minnesota's greenhouse gas reduction policy
B24563 Funding	\$69,100.00	and renewable technology choices by analyzing results from
Project End Date	5/30/2011	14 state climate action plans facilitated by the Center for
Project Lead	Elizabeth Wilson	Climate Strategies.
Department	Humphrey Institute	

The following Seed Grants have completed their research and expended all of their B24563 awarded funding.

Next Generation Dye-Sensitized Solar Cells

PROJECT DETAILS		GOAL
IREE Project #	RS-0009-09	Photovoltaic devices convert solar energy into electricity; in
B24563 Funding	\$70,000.00	order to improve their performance, this project aims to
Project End Date	8/30/2010	reveal the unknown events that occur immediately after light
Project Lead	David Blank	absorption in dye-sensitized solar cells.
Department	Chemistry	

Biohydrogen-Based Biofuel Cells: Highly Efficient and Clean Electricity Generation Using Mixed Wastewater Feedstocks – A Rural Development Project

PROJECT DETAILS		GOAL
IREE Project #	RS-0010-09	To investigate the feasibility of developing a biological fuel cell
B24563 Funding	\$70,000.00	system, which consists of a bio-hydrogen-producing fermenter
Project End Date	8/30/2010	connected to an enzyme-based fuel cell that can produce
Project Lead	Jun Zhu	electricity directly from waste biomass.
Department	S. Research & Outreach Ctr	

Reduction of Carbon Dioxide to Methane Using Nanostructured Heterojunction Photocatalysts

PROJECT DETAILS		GOAL
IREE Project #	RS-0021-09	To examine and establish a new class of nanostructured
B24563 Funding	\$69,178.00	photocatalysts with the aim of converting carbon dioxide and
Project End Date	6/30/2010	water to methane using sunlight.
Project Lead	Eray Aydil	
Department	Chem Eng. & Material Sci.	

Creation of Energy Efficient Inorganic-Bonded Structural Insulated Panels

PROJECT DETAILS		GOAL
IREE Project #	RS-0029-09	To combine the properties of chemically-bonded inorganic
B24563 Funding	\$52,650.00	binders with regionally-sourced and underutilized red pine
Project End Date	6/30/2010	forest thinnings in order to create moisture-, decay-, fire-, ar
Project Lead	Matthew Aro	mildew-resistant structural insulated panels. Compared to traditional structural insulated panels, the new products will
Department	NRRI; UMN, Duluth	require much less energy to produce.

Hydrothermal Carbonization of Algae and Agricultural Wastes: Synthetic Bio-coal

PROJECT DETAILS		GOAL
IREE Project #	RS-0037-09	To use carbon that has been fixed and sequestered by algae
B24563 Funding	\$70,000.00	and other plant materials to rapidly and efficiently produce
Project End Date	12/30/2010	synthetic coal.
Project Lead	Michael Sadowsky	
Department	Soil, Water & Climate	

Improved Energy Production for Large Wind Turbines

PROJECT DETAILS		GOAL
IREE Project #	RS-0039-09	To study the tradeoffs associated with controlling wind
B24563 Funding	\$50,000.00	turbines, with the potential impact of enabling the
Project End Date	6/30/2010	construction of larger, more efficient wind turbines.
Project Lead	Gary Balas	
Department	Aerospace Eng & Mechanics	

Please visit the <u>IREE Grants Database</u> for more information on the Seed Grants.