This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp

Emission Factors for Priority Biofuels in Minnesota

FINAL REPORT

Prepared for:

Minnesota Pollution Control Agency 520 Lafayette Road North Saint Paul, Minnesota 55155

Prepared By:

Eastern Research Group, Inc. 1600 Perimeter Park Drive, Suite 200 Morrisville, North Carolina 27560

June 30, 2007

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY IV			
1.0	Intro	DUCTION	1-1
2.0	2.1 2.2 2.3	COLLECTION REQUIREMENTS Prioritization of Biofuels for Data Collection 2 Data Gathering Criteria 3 Methodology for Data Evaluation 4 Development of Biofuels Emissions Database	2-1 2-2 2-3
3.0	3.1	 ARY OF DATA COLLECTION Data Collection Sources	3-1 3-2 3-3 3-5 3-6
4.0	4.1 4.2 4.3 4.4	ION FACTOR DEVELOPMENT Calculation of Average Emission Factors Completing Data Gaps Emission Factor Ratings Summary of Emission Factors	4-1 4-2 4-5 4-6
5.0	5.1 5.2	MMENDATIONS Collect data from outstanding data sources Conduct additional data gathering Identification of non-priority biofuels for further study	5-1 5-2
6.0	Refer	ENCES	6-1
Append	lix A:	MEMORANDUM ON THE RECOMMENDATION OF DATABASE FORMAT FOR MPCA BIOFUEL EMISSION FACTOR DEVELOPMENT PROJECT	
Append	DIX B:	TELEPHONE CONTACT LIST	
Append	DIX C:	DETAILED LISTING OF FUEL ANALYSIS CITATIONS	
Append	DIX D:	SUMMARY OF EMISSION FACTORS FOR INDIVIDUAL TESTS AND JOURNAL ARTICLES	

LIST OF TABLES

Table 3-1. Publications and Academic Journal Sources 3-2
Table 3-2. State Agencies Contacted 3-3
Table 3-3. Federal and International Agencies Contacted 3-5
Table 3-4. Independent and University Research Organizations 3-6
Table 3-5. Facilities Contacted Utilizing Priority Biofuels
Table 3-6. Selected Gasification Equipment Manufacturers 3-8
Table 3-7. Distribution of Emissions Information for Priority Biofuels
Table 4-1. Generalized Biofuels Developed by Combining Specific Fuel Mixes
Table 4-2. Average Fuel Composition Data for Priority Biofuels
Table 4-3. Emission Factors Transferred from Other Biofuel/Pollutant Combinations
Table 4-4. Qualitative Descriptions for Emission Factor Ratings
Table 4-5. Distribution of Emission Factor Ratings for the Calculated Emission Factors for the Priority Biofuels
Table 4-6. Summary of Emission Factors for Biodiesel Combustion 4-7
Table 4-7. Summary of Emission Factors for Corn Derivatives from Combustion
Table 4-8. Summary of Emission Factors for Switchgrass from Combustion
Table 4-9. Summary of Emission Factors for Wheat Straw from Combustion
Table 4-10. Comparison of Uncontrolled Emission Factors for Biofuels and Conventional Fuels
Table 4-11. Summary of Product Gas Compositions from the Gasification of Switchgrass and Wheat Straw 4-15
Table 5-1. Priority Biofuel and Pollutant Combinations With the Most Limited Data
Table 5-2. Potential Emissions Data Sources From Ongoing and Planned Tests for Priority Biofuels
Table 5-3. Available Emission Data for Non-Priority Biofuels 5-4

EXECUTIVE SUMMARY

Biofuels are increasingly being considered for powering industrial, commercial, and institutional operations due to increased energy prices for fossil fuels, government incentives, and potential environmental benefits. Consequently, the Minnesota Pollution Control Agency (MPCA) and other state air permitting agencies are receiving permit applications requesting the use of biofuels in common combustion equipment, such as boilers, dryers, heaters, and internal combustion engines, found at industrial, commercial, and institutional sites.

State agencies must review permit applications and assess how combustion of biofuels will affect air quality. At this time, the U.S. Environmental Protection Agency does not have sufficient guidance on estimating emissions from combustion of biofuels, except for a few applications. The lack of information limits permitting authorities when evaluating biofuel application emission rates. To address this deficiency, MPCA has undertaken a project to collect emissions information on biofuels burned in stationary combustion devices and to develop emission factors. This report documents the results of this study.

The data collection efforts for this study were limited to a priority list of biofuels that were identified as most likely to be used in Minnesota. The prioritized list includes combustion of biodiesel, corn deriviatives, switchgrass, wheat straw, and gasification of logging (wood) residue and manure. Data were collected for all criteria and air toxic pollutants. Over 90 different potential sources of emission information were identified and reviewed, including research publications and academic journals, research organizations, professional societies, state and federal agencies, facilities combusting biofuels, and equipment manufacturers.

The study used over 200 emission data points to calculate average emission factors for the combinations of biofuels and pollutants. The results of the study provided emission factors for CO, NOx, PM, SO₂, and VOC for all the priority biofuels at stationary combustion sources. Most of the reported emission factors were for co-firing applications of the priority biofuel and fossil fuels. Emission factors for air toxics were limited to HCl from wheat straw and PAH's from biodiesel. However, the quality of 94 percent of the emission factors was determined to be poor due to insufficient documentation of emission test conditions or a limited number of data points for the emissions factors. Data gathered for gasification applications were comprised only of gas composition information and not emission factors. Gasification emission profiles were gathered for switchgrass and wheat straw.

The results of this study indicate that additional data gathering will be necessary to develop a higher quality compilation of emission factors, particularly for wheat straw and corn derivatives at stationary combustion sources, and all combustion applications of gasified biofuels. Some additional information may be obtained from test and study results unavailable at the time of this report. However, additional testing may also be warranted to gather the necessary amount of information. Consideration should also be made whether data gathering should be conducted for non-priority biofuels.

1.0 INTRODUCTION

Biofuels are increasingly being considered for powering industrial, commercial, and institutional operations due to increased energy prices for fossil fuels, government incentives, and potential environmental benefits. Consequently, the Minnesota Pollution Control Agency (MPCA) and other state air permitting agencies are receiving permit applications requesting the use of biofuels in common combustion equipment, such as boilers, dryers, heaters, and internal combustion engines, found at industrial, commercial, and institutional sites.

State agencies must review permit applications and assess how combustion of biofuels will affect air quality. At this time, the U.S. Environmental Protection Agency (U.S. EPA) does not have sufficient guidance on estimating emissions from combustion of biofuels, except for a few applications. The lack of information limits permitting authorities in comparing and evaluating biofuel application emission rates.

To address this deficiency, MPCA has undertaken a project to collect emissions information on biofuels burned in stationary combustion devices and to develop emission factors. This document presents the results of those efforts and is organized in the following manner:

- Section 2.0 discusses the data gathering criteria used in this study, including the selection of a priority list of biofuels to focus data collection efforts. The section also presents the methodology used to evaluate the quality of the emissions data.
- Section 3.0 presents all the data sources that were reviewed. The section also summarizes the information that was extracted from these sources.
- Section 4.0 presents the emission factors developed for the priority biofuels. The section also discusses the methodology used to develop average emission factors and to fill data gaps.
- Section 5.0 discusses potential next steps that may be taken to gather additional information, particularly for priority biofuels that have significant data gaps. The section also discusses the data gathered for the non-priority biofuels.

2.0 DATA COLLECTION REQUIREMENTS

This section presents the criteria used to gather information on biofuels, including the biofuels and pollutants that are the focus of this report, the data requirements that the literature sources met to be used in this report, and the methodology used to evaluate the data.

2.1 <u>Prioritization of Biofuels for Data Collection</u>

Initial literature reviews conducted for this study indicated that a wide variety of biofuels are used in stationary combustion sources. An emphasis on fuels that would most likely be used in Minnesota and time limitations for this study required that the list of potential biofuels be prioritized for data collection and emission factor development. The prioritization was based on the Minnesota Center for Energy and Environment (MNCEE) report "Identifying Effective Biofuel Strategies," as well as a general review of literature sources, to identify the available biofuels in Minnesota, and the biofuels that are projected to be more widely used in the near future. Based on these sources, the number of biofuels evaluated was narrowed to the following list of priority biofuels:

- Biodiesel,
- Corn derivatives (e.g., syrup, distillers wet grains, corn stover, and dried distillers grain and solubles),
- Hays and switchgrass,
- Logging (wood) residue,
- Wheat straw, and
- Manure (digester gas).

The biofuels in the priority list (except biodiesel) represent the top "categories of biomass that have the potential to serve as biomass power feedstocks" in Minnesota according to the MNCEE report. The MNCEE report inventoried all of the potential sources of biomass energy in Minnesota and then accounted for technical and economic limitations associated with using each biofuel to provide an accurate analysis of the biomass energy potential in Minnesota. While these five biofuel sources were not the most abundant in Minnesota, they represent the greatest potential sources of biomass power in Minnesota. Biodiesel was also discussed in the MNCEE report and was described as a "promising technology" for the production of electricity in biodiesel-powered generators. Information on biodiesel was also encountered frequently in other sources. Consequently, biodiesel was added to the list based on this abundant information and discussions with MPCA.

Data gathering was focused on obtaining emissions data for the priority biofuels used in stationary combustion sources (e.g., boilers, process heaters, internal combustion engines) and gasification applications. The gasification process generally produces a gas that has low calorific value. Typically this gas is co-fired with other gaseous fuels (e.g., natural gas) for energy

production or steam generation, or used in gas turbines and engines for power generation. The data gathering activities were conducted for both combustion sources and gasification applications using corn derivatives, wheat straw, and other hays and switchgrass. Biodiesel emissions information was gathered only for stationary combustion sources because biodiesel is not expected to be used for gasification. Emission factors already exist for stationary combustion of logging (wood) residues. Digester gas from manure and waste lagoons was expected to be a rising source of residue fuel in Minnesota. Consequently, data gathering was only conducted for gasification application on manure and logging residue.

2.2 Data Gathering Criteria

The goal of this project is to develop emission factors for use in evaluating permit applications. The MPCA requested that emission factors be presented in standardized units of mass emitted per heat input of fuel burned, i.e., pounds of pollutant emitted per million British thermal units of heat input of fuel combusted (lb/MMBtu). Consequently, data gathering was conducted to obtain previously developed emission factors or inputs necessary to develop emission factors. The primary information necessary to develop emission factors in the standardized units include:

- Emission rates per pollutant (e.g., pounds per hour, tons per year), or concentration and flow rate data (e.g., parts per million and standard cubic feet per minute), and
- Fuel feed rates (e.g., tons per year) and fuel heat capacity or fuel heat input rates (e.g., MMBtu per hour).

Many combustion units co-fire biofuels with fossil fuels. Emissions measured from these units reflect the vent gas of the combined fuels. Consequently, the emissions cannot be apportioned to a specific fuel even when knowing the percent of biofuel and fossil fuel burned because the amount of emissions from the biofuel versus the fossil fuel cannot be determined. For example, it cannot be concluded that 20 percent of emissions are from biofuel if 20 percent of heat input is from biofuel. As a result, information is presented separately in this document for the various co-fired fuel combinations, unless the emission profiles indicate they are similar and can be reviewed together. For example, emissions from a boiler firing 100 percent switchgrass and 90 percent coal.

Other information that was considered relevant to evaluating the validity of the emissions data included:

- Test method information, such as EPA Method used, problems encountered during testing, and any significant changes to test methodology, and
- Air pollution controls present on a combustion unit and whether the tests were conducted upstream or downstream of the control device.

Data gathered for gasification applications is comprised only of gas composition information. Emission factors could not be developed because the vent gas from the gasification process is a fuel used in another combustion device, which may or may not be co-firing another fuel type. Consequently, any emission factors that could be developed would be for the vent gas exiting the combustion device and not the actual gasification process.

Data gathering was also conducted for all pollutants reported to be emitted from the priority biofuels. However, very little information is available for non-criteria pollutants. Therefore, while information on all air toxics are presented, the majority of the data is for carbon monoxide (CO), oxides of nitrogen (NOx), oxides of sulfur (SOx), particulate matter (PM), and volatile organic compounds (VOC).

2.3 <u>Methodology for Data Evaluation</u>

Data sources that did not already contain emission factors in the standardized units or information that could be used to calculate mass emission factors (i.e., concentration and associated vent gas flow information) were rejected from the data analysis. Similarly, sources that did not contain information on the fuel heat input rates or a means to calculate this value were also rejected.

The remaining sources were evaluated to determine whether the information in them was sufficient enough to be used for this analysis. Test reports contained the most detailed information and test conditions could be reviewed comprehensively. Test reports were evaluated to determine if the test methods used were valid and whether all the test method procedures were followed appropriately. Additionally, the reports were reviewed to identify if there were any unusual test conditions that occurred that would indicate the test might not be appropriate to develop a representative emission factor. Generally, each unique test was comprised of three test runs. An average emission factor for the entire test was calculated from the average of the three runs. If one of the test runs showed outlier tendencies (e.g., measured emissions were an order of magnitude different than the other test runs), then the test average would be calculated from the average of the remaining two test runs. None of the test reports reviewed contained a run that was eliminated due to outlier tendancies.

Non-test data sources (e.g., journal articles) could not be evaluated in such detail because the supporting information was not typically reported. If the test method, test conditions, and individual test run information were reported, a more detailed evaluation was undertaken. If these sources were rejected from the analysis because of the lack of validation information, a significant portion of the emissions information would be lost. Consequently, these data were included in the analysis. However, an attempt was made to evaluate the information in the reports by comparing the results to information for similar pollutant/fuel/control combinations. If emissions data from a particular report, when compared to other data sources, indicated it was an outlier (i.e., an order of magnitude different), the data point was documented in a note explaining the range of emission factors. Additionally, the lack of validation data was incorporated into a rating system developed for the emission factors to indicate that insufficient information was provided. The emission factor rating system is discussed in Section 3.2.

2.4 <u>Development of Biofuels Emissions Database</u>

A database in a Microsoft Access format was used to store the emissions information gathered. The stored information served as the basis for the development of the emission factors presented in this document. The database followed the structure established initially by MPCA in their "Updated Minnesota Biomass Facilities Testing Database." The MPCA database included several tables and forms that allowed for the entry and storage of data are collected from three primary types of sources: biomass permits, biomass emission factors from published data, and biomass equipment manufacturers. In addition to the three types of data sources, the existing database format included several lists or "look-up" tables to provide standard naming conventions for data entry. These lists include options for selecting fuel type, fuel feed, capacity units, process type, emission limit units, pollutant type, and control equipment. The MPCA database was modified to incorporate information from the data collection sources documented in this report. A detailed discussion of the database is presented in a memorandum submitted to MPCA on April 3, 2007, "Draft Recommendation of Database Format for Minnesota Biofuel Emission Factor Development Project" (see Appendix A).

3.0 SUMMARY OF DATA COLLECTION

This section presents all of the data sources reviewed for this study and the information obtained from them. Over 90 different potential sources of information were identified and reviewed for this study. No specific beginning date for the literature search was set. If an article was identified that potentially contained relevant information, no matter how old, it was obtained and reviewed. The end date for the literature search was set to be April 2007.

3.1 Data Collection Sources

A wide variety of potential data sources were identified by using keyword searches over the Internet. The terms "biomass" and "biofuel" were used, as well as the name of each of the priority biofuels and selected nonpriority biofuels. Keyword searches also included various permutations of the following:

- Agricultural residue
- Biodiesel
- Bioenergy
- Biofuel
- Co-firing
- Combined heat and power
- Combustion
- Corn stover
- Dried distillers grains
- Emission factors
- Fuel analysis
- Gasification
- Oat hulls
- Power generation
- Switchgrass

The Internet keyword searches facilitated the identification of potential data sources, including research publications and academic journal articles, research organizations, professional societies, State and Federal agencies or research entities, and equipment manufacturers and vendors.

Four bibliographic databases were also used in the searches:

- Knovel Scientific and Engineering Databases A collection of full-text databases in the following subject areas: adhesives, sealants, coatings & inks; biochemistry, biology & biotechnology; ceramics & ceramic engineering; chemistry & chemical engineering; environmental engineering; general engineering references; mechanics & mechanical engineering; metals & metallurgy; plastics & rubber, semiconductors & electronics.
- Applied Science & Technology Index Coverage from October 1983 to present. Indexes international English-language periodicals in the applied sciences and

technology. Areas covered include engineering, chemistry, mathematics, physics, computer technology, data processing and energy-related disciplines.

- Science Direct (<u>http://www.sciencedirect.com</u>) Contains searchable, full-text and bibliographic scientific, medical, and technical information. Content from peer-reviewed journals, books, handbooks, and reference works include the physical sciences and engineering, life sciences, health sciences, the social sciences, and humanities.
- American Chemical Society (<u>http://pubs.acs.org</u>) A publisher of peer-reviewed research journals in agriculture, biochemical research methods, biochemistry/molecular biology, biotechnology/applied microbiology, analytical chemistry, applied chemistry, inorganic and nuclear chemistry, medicinal chemistry, general chemistry, organic chemistry, physical chemistry, computer science, crystallography, energy and fuels, chemical engineering, environmental science and engineering, food science, materials science, nanoscience and nanotechnology, pharmacology, polymer science, and toxicology.

3.1.1 Research Publications and Academic Journals

As a result of the general Internet keyword searches performed, several academic journals were identified as possibly containing emissions data or related information for the various biofuels of interest. Journal articles and/or abstracts were searched generally via the Internet (e.g., Google and Google Scholar) and through selected academic journal clearinghouse sites, such as Science Direct. References within a journal article were also obtained. Table 3-1 lists the publications and journal titles identified that potentially contained biofuels emissions information.

2nd World Conference on Biomass for Energy, Industry and		
Climate Protection, 10-14 May 2004, Rome, Italy		
Agriculture, Ecosystems, and Environment ^a		
Agronomy Journal ^a		
American Society of Agricultural and Biological Engineers ^a		
Applied Catalysis A ^a		
Applied Energy ^a		
Applied Engineering in Agriculture ^a		
Applied Thermal Engineering ^a		
Biodieselmagazine.com		
Biomass and Bioenergy ^a		
Bioresource Technology ^a		
Chemosphere ^a		
Crop Science ^a		
Energy ^a		
Energy & Fuels ^a		
Energy Sources		

Environmental Chemistry Letters ^a		
Environmental Science & Technology ^a		
Ethanol Producer Magazine		
Fuel ^a		
Fuel Processing Technology ^a		
Global Biogeochemical Cycles ^a		
Heat Recovery Systems & CHP		
IFRF Combustion Journal ^a		
Journal of Agricultural Engineering Resources ^a		
Journal of Industrial Ecology ^a		
National Bioenergy Center, National Renewable Energy Laboratory		
Nature ^a		
Nutrient Cycling in Agroecosystems ^a		
Progress in Energy and Combustion Science ^a		
Reaction Kinetics and Catalysis Letters ^a		

 Table 3-1. Publications and Academic Journal Sources

^aSources are academic journals.

3.1.2 State Agency Contacts

Several state air permitting agencies, energy offices, and economic development offices were contacted to identify facilities combusting or gasifying biomass fuels. Agencies from states in the Great Lakes States Biomass Partnership were contacted first because these states were expected to have facilities with biofuels most similar to the list of priority biofuels for Minnesota. Additional calls were made to other states with biomass programs or biomass initiatives. Table 3-2 shows a complete list of state agencies contacted. Appendix B lists the specific contacts made in these states.

Table 3-2.	State Agencies Contacted
-------------------	---------------------------------

Alabama Department of Economic and Community Affairs. Energy, Weatherization and Technology Division		
California ARB Air Toxic Emission Factors (CATEF) Database		
Florida Department of Environmental Protection		
Illinois Environmental Protection Agency		
Iowa Department of Natural Resources		
Iowa Municipal Utilities Authority		
Kansas Department of Health and Environment		
Kentucky Governor's Office of Energy Policy – Biofuels		
Michigan Department of Environmental Quality		
Michigan Department of Labor and Economic Growth		
Minnesota Department of Agriculture		

Table 3-2. State Agencies Contacted

Minnesota Senate			
New York Power Authority			
New York State Energy Research and Development Authority			
North Carolina State Energy Office			
North Dakota Department of Health, Division of Air Quality			
Ohio Environmental Protection Agency			
Oklahoma Department of Environmental Quality – Air Quality Division			
Oregon Department of Environmental Quality			
South Dakota Department of Environment and Natural Resources			
Tennessee Department of Economic and Community			
Development Energy Division			
Texas Commission of Environmental Quality			
The Indiana State Department of Agriculture			
Wisconsin Department of Natural Resources			

Within the Great Lakes Biomass Partnership Region some state agencies maintained a formal electronic listing of all facilities permitted to combust biomass fuels, while other states required individual search of permit files.

- Illinois and Ohio provided a spreadsheet of all permitted facilities using biomass fuels. However, none of the facilities in these lists burned the priority biofuels at this time.
- The Iowa Department of Natural Resources did not have a formal list of biomass sources, but the state provided contacts at the Iowa Municipal Utilities Authority (IAMU). IAMU provided emissions test data for combustion of biodiesel blend B10 at two different units.
- Michigan had already provided a database of their listed biomass sources to the MPCA; however, none of the records in this database used fuels on the priority biofuels list.
- Indiana permitting contractors could not locate any emission test data for units permitted to burn any of the priority biofuels. Some permits in Indiana have been issued using wood emission factors for corn boilers or other biomass fuels, given the lack of available emission factors for the priority biofuels.
- Wisconsin required an individual permit-by-permit search to identify biomass combustion sources. However, the state contact summarized that there were no current permit applications for any of the priority biofuels.

Contacts were also made with state agencies from outside the Great Lakes region to increase the size of the emissions dataset.

• Alabama state contacts reported a switchgrass co-firing project, which matched findings from the U.S. Department of Energy (DOE).

- The California Air Resources Board maintained a database of HAP emissions from agricultural waste, urban wood waste, and blends of agricultural and urban wood waste, but these fuel categories were more generic than the list of priority biofuels, and were not included in the Minnesota database.
- Kentucky maintained an informal list of biomass facilities, but this list only contained woody biomass combustion sources.
- New York agencies had biodiesel emissions data in a powerpoint slide show because the final report had not been released by the conclusion of data collection efforts. The New York data was not included in the analysis since the data had not been finalized at the time of this report.
- South Dakota provided a stack test report from a boiler burning biodiesel.
- North Dakota provided permits for sunflower hulls combustion, which are not on the priority list.
- Contacts in North Carolina, North Dakota, Oklahoma, Oregon, South Carolina, and Texas reported that no facilities in the respective states were permitted to use any of the priority biofuels.

3.1.3 Federal and International Agency Contacts

A variety of energy, agriculture, and environmental agencies at the federal level were also contacted, based on guidance from the MPCA and prior experience in data gathering and emission factor development. Resources from federal agencies were used to identify biomass projects that received funding for biomass combustion and gasification research. Often, projects that are part of these government grant programs have detailed progress reports and summary reports to document the outcomes of their research. Table 3-3 shows the complete list of federal agencies contacted for information.

Brookhaven National Laboratory		
Energy Information Administration		
National Defense Center for Environmental Excellence		
National Renewable Energy Laboratory		
Naval Facilities Engineering Service Center		
U.S. Department of Agriculture, Agricultural Research Service		
U.S. Environmental Protection Agency, AP-42, OTAQ, regulatory development		
Ontario Ministry of Agriculture		

The U.S. DOE's Office of Energy Efficiency and Renewable Energy provided a complete listing of DOE-sponsored utility co-fire projects. This listing noted the type of biomass fuels being used during co-fire tests. Research reports from facilities on the list that were co-firing any of the priority biomass fuels were obtained.

The U.S. EPA provided data from three different databases. The U.S. EPA Office of Transportation and Air Quality (OTAQ) developed a report and database of emissions from both road and non-road engine generators. The database provides emissions information on NOx, PM, VOC, and CO for various blends of biodiesel at these sources. The U.S. EPA's Compilation of Air Pollutant Emission Factors (referred to as AP-42) provided emissions data on several different biomass categories: wood residue combustion in boilers, bagasse combustion in sugar mills, and wildfire and prescribed burning. A review of this information indicated there was no overlap between the AP-42 emission factors and the list of priority biofuels. During the development of the National Emission Standard for Hazardous Air Pollutants (NESHAP) for boilers and process heaters at major sources (40 CFR Part 63 Subpart DDDDD), the EPA regulatory development group developed an emissions test database for boilers burning different fuel types. This database was reviewed for fuels in the agricultural residue category. This review resulted in 11 emission data points for bagasse and blends of urban wood, prunings, pits and shells. Since these biofuels did not overlap with the priority biofuels, they were not included in the Minnesota database.

Several defense-related organizations were contacted regarding the use of biofuels at military facilities. Although some biodiesel engines were identified at defense facilities during a literature search, follow-up contacts with several defense organizations did not result in any emissions data from these sources. Similarly, a review of the web site for the Ontario Ministry of Agriculture did not yield any emissions data.

3.1.4 Other Sources

Other sources contacted for data fell into one of four additional categories: research centers (both independent and university-affiliated), professional societies, end-users of biofuels, and equipment manufacturers. Tables 3-4 to 3-6 shows a complete listing of these other sources. Detailed contacts from these organizations are shown in Appendix B.

Of the independent research organizations contacted, only the Vermont Biofuels Association provided emissions data for any of the priority biofuels. Vermont Biofuels Association has conducted two separate projects to evaluate biodiesel blends in commercial and institutional boilers.

Independent Research Organizations		
Agricultural Utilization Research Institute		
American Oil Chemists Society		
Biomass Energy Foundation		
Biotechnology Industry Organization		
Council of Industrial Boiler Owners		
Minnesota Soybean Growers Association		
National Biodiesel Board.		
The BioBusiness Alliance of Minnesota		
Vermont Biofuels Association		

 Table 3-4. Independent and University Research Organizations

Table 3-4.	Independent and	University Research Organizations
------------	-----------------	--

University Research Centers
Houston Advanced Research Center (HARC)
Iowa State University
Pennsylvania State University, Energy Institute
University of Iowa Utilities and Energy Management
University of Minnesota, Center for Biorefining
University of Minnesota, College of Biological Sciences
University of Minnesota, Department of Applied Economics, College of Agricultural, Food, and
Environmental Sciences
University of Wisconsin-Madison
Washington Straw to Energy Project
Yale University Biofuels Program

Several universities across the country have departments devoted to researching biomass combustion, gasification, or co-firing. The Houston Advanced Research Center is researching emissions from biodiesel combustion, but the phase I research report was not completed in time for this study. Research at Iowa State is focused on characterizing the profiles of the gas from various biomass feedstocks for gasifiers, and not on measuring emission rates from the gas. Research at Penn State is focused on animal waste based-biomass, various oils, greases, switchgrass, and biodiesel. The emissions data for CO, NO_X, and SO₂ for the two priority biofuels were included in the final report. The University of Minnesota provided a report on modeled emissions data from corn derivatives. Washington University and Yale University had biomass research programs, but these did not produce any emissions data. In addition, some universities have sited biomass testing facilities on their own campus power plants. University of Wisconsin-Madison conducted a switchgrass co-firing test on their campus, and University of Iowa is currently co-firing oat hulls with coal; both of these sites provided emissions data.

End-users of biomass combustion were identified from Internet and literature research, or from listings with federal agencies such as the U.S. DOE. When journals or other state agencies did not supply data on other facilities suspected of combusting priority biofuels, these sources were contacted directly. Table 3-5 shows a complete list of facilities contacted directly.

Company	Location
Badger State Ethanol	Monroe, WI
Griffin Industries	Butler, KY
Meister Cheese Co.	Muscoda, WI
Southern Flooring	Plant Gadsden, AL
Tandus Flooring	Dalton, GA

Table 3-5. Facilities Contacted Utilizing
Priority Biofuels

The Southern Flooring Company provided data on its plant Gadsden switchgrass co-firing project in Alabama, which matched data obtained from the U.S. DOE. None of the other

facilities listed as combusting biomass had emissions data or test data available from biofuel combustion at their facility.

Given the limited installations of biomass gasification equipment in the United States, several manufacturers of biomass gasifiers were contacted. Contacts were made with each of the vendors, and then followed up with several e-mails. However, no data was obtained in time for this report. Table 3-6 shows a list of manufacturers contacted.

Manufacturer	Location
PRM Energy	Hot Springs, AR
Frontline Bioenergy	Ames, IA
Prime Energy	Tulsa, OK
Emery Energy	Salt Lake City, UT
Energy Products of Idaho	Coeur d'Alene, ID

 Table 3-6.
 Selected Gasification Equipment Manufacturers

3.2 Description of Emission Data Obtained

Table 3-7 summarizes the distribution of emissions information gathered for the priority biofuels. In general, emissions data for criteria pollutants (PM, CO, NO_X, and SO₂) were available for the combustion of all of the priority biofuels. Limited data were available for emissions of HCl from wheat grass and corn derivative syrup only. Combustion of biodiesel and switchgrass had the most emissions data points, followed by corn derivitives, and then wheat straw. There were no emission factors for gasification of any of the priority biofuels, however there were experimental data available on gas composition from gasified switchgrass and wheat straw, and modeled data were available on gasified corn derivative syrup. A summary of the data sources with emissions information is discussed below:

- A total of 30 journal articles and research reports were identified as potentially containing relevant emissions data,
- Nine emission test reports were obtained from State and Federal agencies,
- Two different facilities combusting biomass fuels provided raw emissions data,
- Two existing emission test databases, one for biodiesel and another for other plant-based biomass fuels were identified, and
- Existing emission factor data for wood residue, bagasse, and agriculture residue fuel categories were also reviewed.

Journal articles

Of the 30 journal articles:

• 12 publications did not contain any usable emissions data,

- 17 publications contained potentially usable emissions data from combusting priority and non-priority biofuels;
 - Seven of the 17 publications contained graphical emissions data. Only one of these seven publications contained data (for switchgrass co-fired with coal) used to develop emission factors,
 - Ten of the 17 publications contained non-graphical emissions data that were input to the database. Five of these ten publications had standardized emission data or sufficient information to convert the data into standardized emission factors for biodiesel, switchgrass fired alone and co-fired with coal, and wheat straw co-fired with coal. Emissions information from all five publications were used to develop emission factors. One of the five publications was modeled data, the other three contained experimental data.
- One publication was a research report that contained modeled data for the combustion of a priority biofuel. Emissions information from this publication was used to develop emission factors.

Test reports

All of the nine emissions test reports received from state and federal agencies or research organizations were used to create the standardized emission factors. The following data were obtained from the nine test reports:

- Three reports provided emissions data from switchgrass co-firing with coal,
- Two reports provided emissions data from corn derivatives co-fired with natural gas,
- One report provided modeled emissions data from 100% corn derivatives (stover, condensed distillers, solubles, dried distillers grains, and distillers wet grains), and
- The final three reports provided emissions data from various blends of biodiesel in boilers.

All of these reports contained emissions data for criteria pollutants, and two of the test reports also contained emissions data for HCl from corn derivatives. Of the nine test reports, four reports had emission rates in a standard lb/MMBtu format, and the emission rates from the other five reports were standardized using flowrates and fuel input data from the test report.

Raw emissions data

Raw emission data were received from two different facilities combusting biomass fuels. Neither of these data were used for the priority biofuel analysis. The first contained HCl, PM, and Hg emissions data from an oat hull and coal co-firing application. The second set of raw emissions data contained emissions for criteria pollutants from a biodiesel-fired engine; these data were received over the phone and in an e-mail without any documentation of test procedures or a description of the unit.

				NO _x					VOC		
Biofuel Category ^d	со	HCl	NOx	as NO	PAH ^a	PM	PM10	SO_2	as THC	Total	Note
											66 data points are measured
											experimental data reported numerically and 6 data
											points are measured
											experimental data reported
Biodiesel ^b	13	- ^c	15	- ^c	18	13	1	4	8	72	graphically
Corn derivatives	2	2	6	- ^c	- ^c	2	1	6	2	21	
											13 data points are measured experimental data, 2 are
Syrup	2	2	3	- ^c	- ^c	2	1	3	2	15	modeled data
Dried Distillers	0	0		0	0	0	0		2		Both data points are
Grains with Solubles	- ^c	- ^c	1	- ^c	_ ^c	_ ^c	- ^c	1	- ^c	2	modeled
Stover	- ^c	_c	1	_ ^c	_ ^c	_c	_ ^c	1	_ ^c	2	Both data points are modeled
Distillers Wet Grains	_ ^c	_ ^c	1	_ ^c	_ ^c	_ ^c	_ ^c	1	_ ^c	2	Both data points are modeled
Switchgrass	6	_c	42	10	_c	1	1	51	_c	111	103 data points are measured experimental data reported numerically, 3 are measured experimental data reported graphically, and 5 are modeled
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										_	3 data points are measured
Wheat straw	22	1	1	10	- ^c	10		1	10	3	experimental data
Total	23	5	70	10	18	18	4	68	12	228	

#### Table 3-7. Distribution of Emissions Information for Priority Biofuels

^aPAH represents the total of 21 different polycyclic aromatic hydrocarbons. ^bNumber of data points does not include data for 100% diesel tests used as baselines for comparing biodiesel emissions. ^cIndicates no data was obtained for the priority biofuel. ^dNo emissions data for gasification of logging residue or manure (digester gas) were identified.

#### **Emission test databases**

Two emission databases were reviewed for emissions information. The U.S. EPA's OTAQ database contained biodiesel emissions from 826 road sources and 14 non-road engines. Biodiesel blends used in the non-road engines included B0 (100 percent fossil-based diesel), B30 (30% biodiesel and 70% fossil-based diesel), and B100 (100 percent biodiesel). Emissions data for PM, CO, NOx, and VOC as THC, from the 14 non-road sources were included in the emission factor analysis. These data were all converted from units of grams per horsepower-hour to lb/MMBtu. The boiler NESHAP database contained standardized emissions test data for speciated HAP. Information in this database was not included in this emission factor analysis because there was no overlap with the priority biofuels list. The only units in the NESHAP emissions test database fired bagasse or a blend of urban wood and prunings, pits, and hulls.

#### **Existing emission factors**

Existing emission factor data for wood residue combustion in boilers, and bagasse combustion in sugar mills are found in EPA's AP-42. Information is provided for PM, NOx, CO, SO₂, and speciated organic compounds. However, wood residue and bagasse were not included in this study because they are not in the priority biofuels list for combustion sources. Similarly, speciated HAP data from the California Air Resources Board Air Toxic Emission Factors (CATEF) Database for the agriculture residue fuel category were not included. Based on engineering judgment, these emission factors were excluded since their fuel categories, which included biomass/wood, blends of urban wood, prunings, pits, and shells, were too broad to assign to one of the priority biofuels.

#### 4.0 EMISSION FACTOR DEVELOPMENT

This section presents the standardized emission factors developed using the information collected from the sources presented in section 3.0. This section also discusses the methodology used to fill in data gaps and describes an emission factor rating system developed to describe the quality of the emission factors developed.

#### 4.1 <u>Calculation of Average Emission Factors</u>

As discussed in Section 2.0, emission factors for each biofuel and pollutant emitted were standardized for each unique test to units of lb/MMBtu. Where the literature already contained emission factors in the required units, that information was used directly in this study. Some literature sources provided emissions information as an emission rate (e.g., lb/hr) and also provided the fuel heat input rate (e.g., MMBtu/hour).

In general, three types of conversions were made to standardize the emission data: concentration data with associated flowrates, mass pollutant per energy (i.e, g/GWh electric), and mass pollutant per mass of fuel input. Concentrations were converted into a lb/MMBtu basis whenever associated flowrate data was available. For energy conversion, the articles were reviewed to determine if the energy was in units of energy input or output. In all cases, energy input was available and the emission factor was calculated based on the energy input. When pollutants were provided relative to the mass of the fuel input, the articles were reviewed to determine a higher heating value of the biofuel, and, in cases where the emissions were based on co-fired applications, the higher heating values and fuel input rates of both fuels were summed to provide a total fuel input heat rate.

For some biofuel/pollutant combinations, emissions information from multiple tests were obtained. For such cases, an average emission factor was calculated to represent the range of emission factors for the biofuel/pollutant combination. The average was calculated as both an arithmetic mean and median. In a normally distributed set of data, the average would be an appropriate value to represent the range of data. If data are not normally distributed, the median may be a better representation, or additional calculations may need to be performed. Comparable median and mean values indicate that an average emission factor calculated using the mean would be appropriate in characterizing the range of values. More rigorous statistical analyses were not considered appropriate because an insufficient number of data points were available for the biofuel/pollutant combinations.

After standardarized emission factors were developed for each biofuel/pollutant combination, they were reviewed to determine if some of the combinations could be generalized to create less specific combinations that would cover more biofuels and contain more data points. This procedure was followed for similar fuel mixes where the pollutant emissions were determined to be similar (e.g., within the same order of magnitude). Table 4-1 shows the biofuels where more generalized combinations were developed.

General Biofuel	Comprised	of the following specific	c fuel mixes
Categories	Fuel blends	Biofuel feedstocks	Fossil fuel feedstock
# 6 Fuel oil with	B5, B10, and B20	No variation	No variation
various % Biodiesel			
in a boiler			
100 % biodiesel in	No variation	Palm oil, soya and	No variation
engines		rapeseed oil	
Biodiesel at various	B10, B20, B30, B50,	Palm oil, soy and	No variation
blends in engines	and B75	rapeseed oil	
Coal with varying	Switchgrass heat input	Switchgrass was	Powder river basis
switchgrass inputs	varies from 1 percent	stored inside and	(PRB) and Pratt seam
	to 8.64 percent	outside, harvested	bituminous coal
		before and after frosts,	
		and used 1 year and 2	
		years after harvest	
Tub grinder	Switchgrass heat input	No variation	No variation
switchgrass and coal	varies from 6.4% to		
with varying	10.2%		
switchgrass inputs			
Hammermill	Switchgrass heat input	No variation	No variation
switchgrass and coal	varies from 5.1% to		
with varying	7.9% heat input		
switchgrass inputs			

#### Table 4-1. Generalized Biofuels Developed by Combining Specific Fuel Mixes

#### 4.2 <u>Completing Data Gaps</u>

After average emission factors were developed, the results were reviewed to identify remaining data gaps. To fill data gaps, the fuel compositions of biofuels were compared to identify similar fuels. Then, emission factors developed for similar biofuel/pollutant/control combinations were transferred to combinations where no information was obtained. Table 4-2 presents a summary of fuel composition information for each of the priority biofuels. The values in the table represent an average of all fuel composition data collected for this report. More detailed information for each fuel analysis citation is contained in Appendix C. Table 4-3 shows the biofuel/pollutant/control combinations where information was transferred from another combination. In all instances, the transfer was made because the fuels had similar compositions and physical properties. However, not all data gaps were filled using this methodology. Section 5.0 contains a discussion of the remaining data gaps and recommendations on additional testing and data gathering to fill in the gaps.

Another method considered to fill data gaps was to calculate worst-case emission factors using an ultimate analysis of the biofuel. However, emission factors calculated from the fuel analysis would potentially be inconsistent with emission factors that already exist because they would be based on worst-case scenarios. Additionally, the fuel analysis would not be able to provide adequate information to fill in data gaps for combustion based-pollutants (e.g., NOx, CO, or VOC).

	Pure	Biodiesel	Biodiesel	Biodiesel		Dried Distillers Grains	Dried Distillers Grains	Distillers		a	a	
Parameter	Biodiesel (B100)	Blend (B5)	Blend (B10)	Blend (B20)	Corn Stover	with Solubles	without Solubles	Wet Grains	Syrup	Switchgrass (pellets)	Switchgrass (loose)	Wheat Straw
	()	(==)	(===)	(==+)		As receive			~J-~P	(1	(20000)	
Moisture, %												
Ash, %					5.46	3.79	1.96	0.97	2.31	2.90	4.63	7.71
Higher heating												
value, Btu/lb					6,305	8,414	8,473	3,349	2,765	7,381	7,323	6,668
						Moisture F						
Ash, %	0.06				7.90	4.01	2.24	2.58	7.02		5.43	10.15
Higher heating												
value, Btu/lb	19,020	18,259	18,353	18,223	8,130	9,386	9,848	9,438	8,482		8,293	7,636
Lower heating												
value, Btu/lb					7,192	8,703		8,819	7,819			
37.1.71					Pr	oximate An	alysis					
Volatile matter,	99.60				64.58	82.50		83.18	81.71	72.30	79.05	51.05
% Fixed Carbon,	99.00				04.38	82.30		83.18	81./1	72.30	/9.05	51.05
%	0.30				18.35	12.84		13.58	10.32	15.50	13.33	18.25
Chlorine, µg/g	0.50				984	1,757		1,673	3,459	15.50	15.55	10.25
Chlorine, %					704	1,757		1,075	5,757		0.14	0.15
Chlorine, ppm	1,100									1,075.00	650.02	0.10
Mercury, µg/g	1,100					< 0.010		< 0.10	< 0.012	1,070.00	000.02	
Mercury, mg/kg											< 0.1	
, 0.0					U	ltimate Ana	lysis					
Carbon, %	76.70	86.28	86.09	85.06	44.87	50.24		52.53	43.12	51.70	45.19	43.10
Hydrogen, %	0.10	10.50	10.31	10.64	5.41	6.89		6.60	7.07	7.00	5.47	5.56
Nitrogen, %	12.30				0.70	4.79		5.35	2.63	0.20	0.67	0.56
Oxygen, %	10.80	1.05	1.76	2.47	30.94	33.42		32.28	39.21	28.90	37.13	33.34
Sulfur, %	0.00	1.86	1.64	1.50	0.10	0.61	0.40	0.66	0.96	0.00	0.13	0.19
						Metals, mg/	kg					
Arsenic					2.50	<3.20		<3.10	<3.20		1.20	
Beryllium						< 0.093		< 0.093	< 0.11			
Cadmium						< 0.046		<0.50	< 0.53			
Chromium						0.50		<0.79	0.75		58.00	
Lead					0.46	< 0.046		< 0.50	< 0.53		40.00	

### Table 4-2. Average Fuel Composition Data for Priority Biofuels

#### Dried Dried Distillers Distillers Pure **Biodiesel Biodiesel** Biodiesel Grains Grains Distillers Wheat Biodiesel Blend Blend Blend Corn with without Wet Switchgrass Switchgrass **(B20)** Solubles (pellets) (loose) Parameter **(B100) (B5) (B10)** Stover Solubles Grains Syrup Straw Manganese 23.40 15.95 12.05 34.93 Nickel 0.87 1.97 < 1.200.81 Potassium Selenium 1.80 <1.80 <1.60 4.00 Silver <10 **Reference** (see below) 1, 2, 4, 7, 10, 2, 5, 8, 2, 5, 6, 9, 2.8 2 8 8 7,10 12 12 12 7 10, 14 14 13, 14

#### Table 4-2. Average Fuel Composition Data for Priority Biofuels

#### **References:**

1. Aerts, D., and K. Ragland. 1997. Co-firing switchgrass and coal in a 50 MW pulverized coal utility boiler. Final Report. Prepared for Great Lakes Regional Biomass Energy Program, Electric Power Research Institute, Madison Gas and Electric Company, Wisconsin Power and Light Company, Nebraska Public Power District.

2. Agricultural Utilization Research Institute. AURI Fuels Initiative - Agricultural Renewable Solid Fuels Data. http://www.auri.org/research/fuels/pdfs/fuels.pdf

3. Amos, W. Summary of Chariton Valley switchgrass co-fire testing at the Ottumwa Generating Station in Chillicothe, Iowa. Draft Milestone Report for the U.S. Department of Energy's Biomass Program and the Chariton Valley Biomass Project.

4. Boylan, D. et al. 2001. Evaluation of Switchgrass as a co-firing fuel in the Southeast. Final Technical Report. DOE Cooperative Agreement No. DE-FC36-98GO10349. EPRI WO# 4603-05.

5. Demirbas, A. Sustainable Cofiring of Biomass with Coal. Energy Conversion and Management. V44, pp. 1465-1479. 2003.

6. Cuiping, L. et al. Chemical Elemental Characteristics of Biomass Fuels in China. Biomass and Bioenergy. V27, pp. 119-130. 2004.

7. Miller, B. Fuel Flexibility in Boilers for Fuel Cost Reduction and Enhanced Food Supply Security. The Energy Institute, Pennsylvania State University for the Pennsylvania Energy Development Authority. June 30, 2006.

8. Morey, V. Generating Electricity with Biomass Fuels at Ethanol Plants. University of Minnesota. Milestone Report June 1, 2006.

9. Nordin A. Chemical Elemental Characteristics of Biomass Fuels. Biomass and Bioenergy v6 no5. 1994.

10. Oak Ridge National Laboratory. "Bioenergy Feedstock Characteristics." <u>http://bioenergy.ornl.gov/papers/misc/biochar_factsheet.html</u>

11. RD56: Generating Electricity with Biomass Fuels at Ethanol Plants report for Task 2, "Analysis of Biomass Co-Product Streams." 12/12/06.

12. Southworth, T., 2006. Department of Buildings and General Services Vermont Biodiesel Pilot Project: Emissions Testing of biodiesel blends with #6 fuel oil at the

Waterbury State Office Complex. Prepared by State of Vermont Department of Buildings and General Services.

13. Union of the Electriciy Industry. Co-firing of Biomass and Waste with Coal. March 1997. Note: The straw is an unspecified type, but it is likely wheat and it was included in the average for this fuel composition summary.

14. US Department of Energy Biofuels Program. "Biomass Feedstock Composition and Property Database." <u>http://www1.eere.energy.gov/biomass/feedstock_databases.html</u>. For corn stover, all values are based on an average of 12 test results listed in the database. For wheat straw only a single test was in the database. For switchgrass the HHV, ash, volatile matter, and fixed carbon are based on the average of 12 test results listed in the database, oxygen and sulfur were based on 14 tests, while carbon and hydrogen are based on 30 tests, and nitrogen was based on 32 tests.

 Table 4-3. Emission Factors Transferred from Other Biofuel/Pollutant Combinations

Emission factors for Fuel/pollutant	Transferred from the fuel mix
100 % Dry distillers grains with solubles for	
HCl, CO, and VOC as THC	Corn syrup with 19% heat input natural gas
100 % Dried wet grains for HCl, CO, and	Corn syrup with 1976 heat input natural gas
VOC as THC	
100 % Corn syrup	
Coal with varying switchgrass inputs for HCl	
Tub grinder switchgrass and coal with	
varying switchgrass input for HCl	
Hammermill switchgrass and coal with	Coal with 10% wheat straw by heat input
varying switchgrass input for HCl	
PRB coal with 10% switchgrass by mass	
(co-milling and direct injection of	
switchgrass and no overfire air) for HCl	

### 4.3 <u>Emission Factor Ratings</u>

Each of the emission factors were assigned a quality rating based on the overall quality of the data and the representativeness of the data points that formed the basis of calculation for each emission factor. Data were classified as high-quality if sufficient information was provided to evaluate test conditions used to measure the data, such as information in test reports. Data were classified as low-quality if they were based on models or insufficient background information to assess the testing procedures and results. Table 4-4 describes the rating criteria.

Emission Factor Rating	Data Criteria for Rating
А	High-quality data, significant number of data points from multiple sources.
В	High-quality data, limited number of data points from multiple or single sources.
С	Low-quality data, limited number of data points from a single source.
D	Low-quality data, and extremely limited number of data points from a single source, or a single data point.

 Table 4-4. Qualitative Descriptions for Emission Factor Ratings

A total of 56 average emission factors were calculated for the priority biofuels. Of these 56 factors, one "A" rating was assigned to NOx emissions from switchgrass. Two "B" ratings were assigned, one to SO₂ emissions from switchgrass, and another to emissions of PAH from biodiesel. These factors represented the highest quality emission factors calculated from the

available raw data, relative to the entire collection of emission factors calculated for all priority biofuels. The overall distribution of the 56 emission factor ratings is presented in Table 4-5.

#### Table 4-5. Distribution of Emission Factor Ratings for the Calculated Emission Factors for the Priority Biofuels

Emission Factor Rating	Number of Ratings Assigned	Percentage of Emission Factors
А	1	1.8%
В	2	3.6%
С	19	33.9%
D	34	60.7%

#### 4.4 <u>Summary of Emission Factors</u>

Table 4-6 through 4-9 present the emission factors developed for each pollutant and each priority biofuel combusted in stationary sources. The tables provide the range of emission factors as well as the mean and median average emission factor. The tables also contain a rating for each of the average emission factors developed based on the criteria in section 4.3, and identify the emission factors that were transferred from other biofuel/pollutant combinations. References for the emission factors are also presented in the table and correspond to references in section 6.0. Appendix D summarizes the arithmetic mean emission factor, and provides more specific detail on test conditions (e.g., Test ID, fuel mix burned, and controls), for each emission test. The information in Appendix D was extracted from the Microsoft Access database storing all the emissions information gathered for this study.

Note on Fuel			Emiss	ion Factor (lb/M	MBtu)				Emission	
Fuel	Input Variation	Pollutant	Range	Mean	Median	Data Points	Note on Range of Emissions	Control	Factor Rating	Reference
#6 Fuel oil		СО	0.13-0.21	0.17	0.16	3	Min is w/B20. Max is w/B10.		С	19
with various % biodiesel in	Biodiesel input varies from B5 to B20	NO _X	0.27-0.31	0.30	0.31	3	Min is w/B20. Max is w/B5.	None specified	С	19
boiler	10 1020	$SO_2$	1.56-1.67	1.60	1.57	3	Min is w/B20. Max is w/B10.		С	19
100%	NA ^a	СО	0.006-0.104	0.055	0.055	2	NA	None	D	13,17
biodiesel in	NA	NO _X	NA	0.109	NA	2	NA	specified	D	13, 17
boiler	NA	PM	NA	0.002	NA	1	NA		D	17
	NA	СО	0.12-0.71	0.43	0.42	6	Min is w/oxid. Catalyst. Max is w/o	None specified	С	20
	NA	NO _X	3.62-6.71	5.34	5.25	6	Min is w/rapeseed oil on John Deere model CD6068TL052. Max is w/soy methyl ester on Caterpillar model 3304PCNA	Oxidation catalyst or none	С	20
100% biodiesel in engines	NA	РМ	0.07-0.23	0.11	0.08	6	Min is w/palm-based biodiesel on 4-stroke engine, model QC945. Max is w/rapeseed based biodiesel on 5 stroke John Deere model CD6068TL052		С	11, 20
	NA	Total PAH	2.66E-05 to 6.08E-05	4.82E-05	5.71E-05	3	All emissions from same engine and fuel	None	С	11
	NA	VOC as THC	0.02-0.16	0.07	0.06	6	Min has oxidation catalyst w/soy methyl ester based biodiesel on a Caterpillar model 3304PCNA. Max is w/o catalyst and w/rapeseed based biodiesel on John Deere model 6081T	specified	С	11, 20

### Table 4-6. Summary of Emission Factors for Biodiesel Combustion

	Note on Fuel		Emiss	ion Factor (lb/M	MBtu)				Emission	
Fuel	Input Variation	Pollutant	Range	Mean	Median	Data Points	Note on Range of Emissions	Control	Factor Rating	Reference
	Biodiesel blend is B30	СО	0.19-0.7	0.45	0.45	2	Min is w/an oxid. Catalyst. Max is w/o	None specified	D	20
Biodiesel at various Blends in	Biodiesel blend ranges from B10 to B30	NOx	4.18-6.95	5.65	5.74	4	Min is w/B10 on a 1999 CAT engine. Max is w/B10 on a 1972 cooper Bessemer engine	Oxidation catalyst or none	С	20
Engines	Biodiesel blend ranges from B10 to B75	РАН	1.19E-03 - 3.50E-03	2.36E-03	2.36E-03	15	Min is w/palm based biodiesel at B75. Max is w palm-based biodiesel at B10.		В	11
	Biodiesel blend ranges from B10 to B75	PM	0.03-013	6.01E-02	5.00E-02	7	Min is w/B10 palm based biodesel on 4- stroke. Max is w/cooper Bessemer diesel generator from 1972	None specified	С	7, 11
	Biodiesel blend is B30	VOC as THC	0.02-0.06	0.04	0.04	2	Min is w/oxid. Catalyst. Max is w/o		D	20

### Table 4-6. Summary of Emission Factors for Biodiesel Combustion

^a NA – not applicable.

Fuel Mix	Pollutant	Mean / Median Emission Factor (lb/MMBtu)	Number of Data Points	Note on Emissions	Control	Emission Factor Rating	Reference
	NOx	0.56	1	Modeled data for a swirl stablized burner and furnace. The		D	
100% corn stover	SOx	0.10	1	modeled burner is unstaged and does not adjust for any combustion optimization	none	D	14
	NOx	1.09	1	Modeled data for a swirl stablized burner and furnace. The		D	
100% distillers dried grains with	SOx	1.48	1	modeled burner is unstaged and does not adjust for any combustion optimization	none	D	14
solubles	HCl	3.14E-03	1	EF transferred from EF for syrup co-fired with 19%		D	
30100103	VOC as THC	4.41E-04	1	natural gas by heat input	fabric filter	D	
	CO	2.82E-03	1			D	
	NOx	3.02	1	Modeled data for a swirl stablized burner and furnace. The		D	14
100% distillers wet	SOx	2.31	1	modeled burner is unstaged and does not adjust for any combustion optimization	none	D	14
grains	HCl	3.14E-03	1	EF transferred from EF for syrup co-fired with 19%		D	
	VOC as THC	4.41E-04	1	natural gas by heat input	fabric filter	D	
	CO	2.82E-03	1			D	
	NOx	0.94	1	Modeled data for a swirl stablized burner and furnace. The		D	
1000/	SOx	1.43	1	modeled burner is unstaged and does not adjust for any combustion optimization	none	D	14
100% syrup	HCl	3.14E-03	1	EE transformed from EE for a more for the ith 100/	fabric filter	D	
	VOC as THC	4.41E-04	1	EF transferred from EF for syrup co-fired with 19% natural gas by heat input		D	
	СО	2.82E-03	1	natural gas by heat input		D	
	СО	2.82E-03	1			С	
1 100/1	HCl	3.14E-03	1			С	1
syrup with 19% by heat input of	NOx	2.90E-03	1		fabric filter	С	15
natural gas	PM	2.71E-02	1		labric filter	С	15
naturur gus	$SO_2$	1.99E-02	1			С	
	VOC as THC	4.41E-04	1	Managed data for an independent in the lating for the data of the d		С	
	СО	2.00E-03	1	Measured data for an industrial circulating fludized bed boiler		С	
	HCl	2.26E-02	1	bonei		С	
syrup with 30% by	NOx	3.33E-02	1	]		С	
heat input of	PM	2.40E-02	1	]	fabric filter	С	16
natural gas	PM10	1.52E-01	1	]		С	
	$SO_2$	1.17E-01	1	]		С	
	VOC as THC	9.40E-03	1			С	

### Table 4-7. Summary of Emission Factors for Corn Derivatives from Combustion

Fuel	Note on Fuel Input	Pollutant			n Factor MBtu)		Control	ntrol Note on Range of Emissions		Reference
Subcategory	Subcategory Varation Rang		Range	Mean	Median	Data Points	Control	The of Funge of Emissions	Factor Rating	inter en eu
	Switchgrass heat input varies from 1- 34.1% by heat input	СО	4.30E-03 to 1.23	0.78	0.55	4	None specified	Min is at 1% switchgrass by heat input in a tangentially-fired utility boiler. Max is at 34% switchgrass by heat input in a bubbling fludizied bed boiler.	D	2, 18
	Switchgrass heat input varies from 1- 34.1% by heat input	NO _X	0.39-0.8	0.60	0.61	38	None specified	Min is at 1% switchgrass by heat input in a tangentially-fired utility boiler. Max is at 4.63% switchgrass by heat input in a tangentially-fired utility boiler.	A	2, 3, 4
Coal with Varying	Switchgrass input held at 1% by heat input	РМ	NA	0.05	0.05	1	ESP	Emissions reflect a tangentially fired	D	2
Switchgrass Input	Switchgrass input held at 1% by heat input	PM ₁₀	NA	0.04	0.04	1	ESP	utility boiler	D	2
	NA ^a	HCl	NA	0.13	0.13	1	None	EF transferred from HCl EF for wheat straw	D	
	Switchgrass heat input varies from 1- 34.1% by heat input	SO ₂	0.53-4.9	2.72	2.65	39	None specified	Min is in a pilot-scale bubbling fluidized bed with 34.1% switchgrass. Max is modeled data for 5% switchgrass co-fired w/coal at the national average SOx emission rate for coal-fired electricity generation.	В	3
Tub Grinder Switchgrass and	Switchgrass heat input varies from 6.2-10.2%	NO _X	0.36-0.49	0.41	0.41	7	None specified	Min is at 6.5% switchgrass by heat input. Max is at 6.4% switchgrass by heat input. Emissions reflect a wall-fired utility boiler.	С	1
Coal with Varying	NA	HCl	NA	0.13	0.13	1	None	EF transferred from HCl EF for wheat straw	D	
Switchgrass Input	Switchgrass heat input varies from 6.2-10.2%	SO ₂	1.84-3.03	2.30	2.28	7	None specified	Min is at 6.5% switchgrass by heat input. Max is at 10.2% switchgrass by heat input. Emissions reflect a wall-fired utility boiler.	С	1

 Table 4-8.
 Summary of Emission Factors for Switchgrass from Combustion

Fuel	Note on Fuel Input	Pollutant	nt Emission Factor			Control	Note on Range of Emissions	Emission Factor	Reference		
Subcategory	Varation		Range	Mean	Median	Data Points		U	Rating		
Hammermill Switchgrass and	Switchgrass heat input varies from 5.1-7.9%	NO _X	0.41-0.46	0.43	0.42	3	None specified	Min is at 6.5% switchgrass by heat input. Max is at 6.4% switchgrass by heat input. Emissions reflect a wall-fired utility boiler.	С	1	
Coal with Varying	NA	HCl	NA	0.13	0.13	1	None	EF transferred from HCl EF for wheat straw	D		
Switchgrass Input	Switchgrass heat input varies from 5.1-7.9%	$SO_2$	2.29-2.42	2.35	2.33	3	None specified	Min is at 6.5% switchgrass by heat input. Max is at 10.2% switchgrass by heat input. Emissions reflect a wall-fired utility boiler.	С	1	
PRB coal with 10% switchgrass by mass (no overfire air)	NA	HCl	NA	0.13	0.13	1	None	EF transferred from HCl EF for wheat straw	D		
PRB coal with 10% switchgrass by mass (no overfire air)	Switchgrass		0.63	0.64	0.64	2	None specified	Min is for direct injection. Max is for co-milling. Both reflect emissions from a pilot scale tangentially-fired boiler.	D	4	
PRB coal with 10% switchgrass by mass (co- milling of switchgrass, 15% overfire air)	input held at 10% by mass	NO _X	NA	0.44	0.44	1	None specified	Emissions reflect a pilot scale tangentially-fired boiler.	D	4	
		CO	0.60-0.77	0.69	0.69	2	None	Min is based on modeled data using	D	13, 18	
Switchgrass-fired	Switchgrass input held at	Switchgrass input held at	SO _X	0.02 - 0.24	0.13	0.13	2	None	loose switchgrass in a utility boiler. Max is based on test data from a bubbling fluidized bed boiler and pelletized switchgrass.	D	13, 18
alone	100% switchgrass	NO _X	0.34 - 0.49	0.41	0.41	2	None	Min is based on test data from a bubbling fluidized bed boiler and pelletized switchgrass. Max is based on modeled data using loose switchgrass in a utility boiler.	D	13, 18	

### Table 4-8. Summary of Emission Factors for Switchgrass from Combustion

^a NA – not applicable.

Fuel Mix	Pollutant	Number of Emission Factors	Mean / Median Emission Factor (lb/MMBtu)	Control	Notes on Emissions	Emission Factor Rating	Reference
	$SO_2$	1	0.10	SO ₂ and NO _X flue gas treatment	Measured	D	
Coal with 10% Wheat Straw	NO _X	1	0.30	(FGD and ammonia)	data on a large utility	D	8
	HCl	1	0.13	None	boiler	D	

 Table 4-9.
 Summary of Emission Factors for Wheat Straw from Combustion

Table 4-10 compares the emission factors for each biofuel developed in this report to its corresponding replacement or blended conventional fuel. For example, in internal combustion engine applications, biodiesel serves as a substitute for, or is blended with, fossil-based diesel. In liquid fuel-fired boiler applications, biodiesel replaces or blends with a distillate or residual fuel oil. In solid fuel applications, boilers often co-fire one of the priority biofuels with a conventional fuel, such as coal. In a few instances solid biofuels have been combusted alone, without any co-firing. In the absence of other emission factor data, some state permitting agencies have used emission factors for wood to estimate the emissions from solid biofuel combustion.

Fuel	Application	СО	NOx	SOx	PM	VOC	HCl	Note		
	Liquid Fuel Comparison									
100% Biodiesel (B100)		0.12-0.71	3.62-6.71	0.00	0.07-0.23	0.02-0.16	NA	A, B		
Biodiesel blends (B10 to	Engines									
B75)	Engines	0.19-0.7	4.18-6.95	NA	0.03 - 0.13	0.02-0.06	NA	A, B		
Diesel		0.95	4.41	0.29	0.31	0.35	NA	B, C		
100% Biodiesel (B100)		0.006 - 0.104	0.109 - 0.119	0.00	0.002	NA	NA			
Biodiesel blends with #6	Commercial/Industrial									
Fuel Oil	Boilers (less than 100									
(B5 to B20)	mmBtu/hr)	0.13-0.21	0.27-0.31	1.56-1.67	NA	NA	NA			
Residual Fuel Oil (#6)		0.03	0.37	1.92	0.07	1.07E-02	NA	B, D		
Distillate Fuel Oil		0.04	0.14	1.01	0.01	3.97E-03	NA	B, E		
			Solid Fuel Comp	parison						
Corn Derivatives										
100% Stover		2.82E-03	0.56	0.10	NA	4.41E-04	3.14E-03	F, G		
100% Distillers wet grains	Modeled data for PC swirl-	2.82E-03	3.02	2.31	NA	4.41E-04	3.14E-03	F, G		
100% Distillers dried	stabilized boiler									
grains with solubles	stabilized bolief	2.82E-03	1.09	1.48	NA	4.41E-04	3.14E-03	F, G		
100% Syrup		2.82E-03	0.94	1.43	NA	4.41E-04	3.14E-03	F, G		
Syrup and Natural Gas										
Blends	Circulating FBC Boiler	0.002 - 0.283	0.0029 - 0.033	0.0199 - 0.117	2.4 - 2.71	0.000441 - 0.00940	0.00314 - 0.0226	Н		
	Test data from Commercial									
Switchgrass	watertube boiler and modeled									
	data from utility boiler	0.60 - 0.77	0.34 - 0.49	0.02 - 0.24	NA	NA	NA			
	Large utility PC wall-fired									
Switchgrass and Coal	and tangentially-fired boilers									
Blend	(50 - 725 MW) and a pilot-									
	scale bubbling fluidized bed	0.004 1.00	0.26 0.0	0.52 4.0	2.5		0.12	т.т.		
Where Character 1 Carl	boiler	0.004 - 1.23	0.36 - 0.8	0.53 - 4.9	2.5	NA	0.13	I, J		
Wheat Straw and Coal Blend	Large utility boiler (unspecified design)	NA	0.30	0.97	NA	NA	0.13	К		
Diellu	(unspecified design) Stoker and fuel cell boilers	0.6	0.30	0.97	INA	INA	0.13	Λ		
Dry Wood	Circulating FBC Boiler	0.6	0.49	0.025	0.4	0.017	NA	L		
			0.10	1.19	0.65	<b>N</b> T 4	0.05	MND		
Subituminous Coal	Circulating FBC Boiler PC wall-fired Boiler	0.69	0.19	1.19	0.65	NA	0.05	M, N, P		
Suonuminous Coar		0.02	0.38	0.67	2.54	NA	0.05	O, P		
Ditaminana Cast	PC tangentially-fired Boiler		0.32	1 (7 4 (0	2 (7 ( ())	<b>NT 4</b>	0.05	P, Q		
Bituminous Coal	PC wall-fired Boiler	0.02	0.46	1.67 - 4.60	2.67 - 6.69	NA	0.05	R		

#### Table 4-10. Comparison of Uncontrolled Emission Factors for Biofuels and Conventional Fuels

Notes:

A. Some engines were listed as having a catalyst control to reduce Nox emissions. The removal efficiencies of these catalysts are not documented in the report, and engines with and without the catalyst are shown in these emission factor ranges.

B. Emissions are shown as THC as VOC for liquid fuels. VOC emissions are from exhaust only.

C. Source: US EPA AP-42. Chapter 3.3. Emission Factors for Uncontrolled Diesel Industrial Engines

D. Source: US EPA AP-42. Chapter 1.3. Criteria Pollutant Emission Factors for Fuel Oil Combustion in Boilers < 100 mmBtu/hr. **Assumes 1.83% Sulfur content of the fuel oil, based on the fuel oil used in the reference test report 19 (Southworth, T., 2006). A heat content of the fuel is assumed to be 150 mmBtu/1000 gallons. SOx is represented here as SO₂.

E. Source: US EPA AP-42. Chapter 1.3. Criteria Pollutant Emission Factors for Fuel Oil Combustion in Boilers < 100 mmBtu/hr. *** Assumes 1% sulfur content of the fuel oil and a heat content of 140 mmBtu/1000 gallons. SOx is represented here as SO₂.

F. The emission factor was tranferred from the emission factor for syrup co-fired with 19% natural gas by heat input.

G. The modeled data for NOx emissions are based on an un-staged burner and the effects of over-fire air on NOx are not included in the CFD modeling. In an actual test scenario, NOx emissions would be expected to be reduced from the predicted values shown here due to combustion optimizations in the boiler.

H. The emission factor for PM was adjusted assuming a control efficiency of (99%) based on the presence of a fabric filter.

I. The emission factor for PM was adjusted to uncontrolled assuming a control efficiency of 98% based on the presence of an ESP. Minimum emissions for CO are on a PC tangentially-fired large utility boiler combustor. Maximum CO emissions are in a pilot scale bubbling FBC boiler.

J. The emission factor was transferred from the HCl emission factor for wheat straw.

K. The emission factor for SOx was adjusted assuming a control efficiency of 90% based on the efficiencies of pollutant removal processes (FGD and ammonia), referenced in (Hartmann, D., 1999). The NOx emissions listed here are not uncontrolled, however, the removal efficiency of the NOx control were unknown and thus the emission factor could not be adjusted.

L. Source: US EPA AP-42. Chapter 1.6. Emission Factors from Wood Residue Combustion. Emissions from uncontrolled dry wood combustion were used in this summary.

M. Source: US EPA AP-42. Chaper 1.1. Emission Factors for from Bituminous and Subbituminous Coal. FBC, circulating bed boiler was used in this summary.

N. According to the note in AP-42, an emission factor for underfeed stokers was used for SO₂ since the presence of a calcium-based sorbent is unknown.

O. Source: US EPA AP-42. Chaper 1.1. Emission Factors for Bituminous and Subbituminous Coal. Emissions from a PC dry-bottom wall-fired boiler, pre-NSPS, were used for this summary.

P. Emissions reflect a low sulfur (0.5%) PRB coal with an estimate of 6.6% ash.

Q. US EPA AP-42. Chaper 1.1. Emission Factors for Bituminous and Subbituminous Coal. Emissions from PC dry-bottom tangentially-fired boiler, pre-NSPS, were used in this summary.

R. Emissions here reflect the coals used in co-firing applications range from an unspecified bitumionous (sulfur (1.14% dry), 10.7% ash) to a Pratt Seam coal (3.15 (% dry) sulfur, 6.95 (% dry ash).

NA = Not Applicable.

#### 4.5 <u>Summary of Gasification Data</u>

The literature searches and information gathering activities obtained fuel speciation profiles from gasification processes. The data obtained included primarily experimental data contained in academic journal articles (five sources) and one source of computational modeling data. Of the six data sources obtained, gasification data for only three of the priority biofuels (wheatstraw, switchgrass, and dried distillers grains with solubles) were available, and of these, product gas compositions were available for only switchgrass and wheat straw (Table 4-11).

Fuel	Switchgrass	Wheat Straw	Natural Gas
Reference	Vriesman, P. et al.	Ergudenler A. and A.E. Ghaly	Union Gas
Gasification Unit Type	Fluidized Bed	Fluidized Bed	NA
Number of Samples	15	12	NA
Product Gas Component		Average Composition ^a	
CH ₄	13.3 vol % (dry)	4.3 mol % (dry)	94.9 mol % (dry)
СО	35.7 vol % (dry)	20.4 mol % (dry)	NA
CO ₂	24.0 vol % (dry)	14.7 mol % (dry)	0.7 mol % (dry)
C ₂ H ₂	0.3 vol % (dry)	NA ^b	NA
C ₂ H ₄	4.1 vol % (dry)	NA	NA
C ₂ H ₆	0.2 vol % (dry)	NA	2.5 mol % (dry)
$C_2H_n$	NA	2.4 mol % (dry)	NA
C ₃ H ₈	NA	NA	2.5 mol % (dry)
i-C ₄ H ₁₀	NA	NA	0.03 mol % (dry)
n-C ₄ H ₁₀	NA	NA	0.03 mol % (dry)
i-C ₅ H ₁₂	NA	NA	0.01 mol % (dry)
n-C ₅ H ₁₂	NA	NA	0.01 mol % (dry)
Hexanes	NA	NA	0.01 mol % (dry)
H ₂	22.0 vol % (dry)	5.5 mol % (dry)	Trace
N ₂	NA	51.5 mol % (dry)	1.6 mol % (dry)
O ₂	NA	1.2 mol % (dry)	0.02 mol % (dry)

# Table 4-11. Summary of Product Gas Compositions from the Gasification of Switchgrass and Wheat Straw

^a Average product gas composition for switchgrass gasification is reported as volumetric percentages and does not include nitrogen or steam.

^bData not available/not applicable.

#### Sources:

Vriesman, P., E. Heginuz, and K. Sjöström. 2000. Biomass gasification in a laboratory-scale AFBG: influence of the location of the feeding point on the fuel-N conversion. Fuel 79: 1371-1378.

Ergudenler, A. and A.E. Ghaly. 1992. Quality of gas produced from wheat straw in a duel-distributor type fluidized bed gasifier. Biomass and Bioenergy 3(6): 419-430.

Union Gas. Chemical Composition of Natural Gas (inclusive of supplies from Western Canada, Ontario, and the United States). <u>http://www.uniongas.com/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/aboutus/a</u>

#### 5.0 **RECOMMENDATIONS**

Section 4.2 discusses a rating system applied to the emission factors developed for this study. Table 4-5 shows that of the 56 emission factors developed, only three were considered to have been based on journals or test reports with sufficient background information on the test conditions. These were assigned a higher quality rating (A or B). However, two of the three sources were based on a limited number of data points from a single data source. The remaining 53 emission factors, or 95 percent of the factors, were assigned an emission factor rating of C or D, indicating that they were based on either a single data point, or limited data from lower quality information from sources without sufficient documentation.

Table 5-1 shows the significant data gaps in emission factors for pollutants that are the most common ones measured for the priority biofuels.  $SO_2$  and PAH emissions were not included in this table. If MPCA were to prioritize emissions testing or further data gathering,  $SO_2$  emissions are not expected to increase when a facility switches to any of the priority biofuels, and CO could be used as a surrogate for emissions of PAH. The table indicates that biodiesel is the only fuel where emission factors were developed for the majority of pollutants.

Application	Biofuel Category	со	HCl	Nox	PM	PM ₁₀	THC as VOC		
	biodiesel		Х			Х			
	corn derivatives								
	syrup					Х			
combustion	dried distillers grains with solubles	X	X	X	X	Х	Х		
	stover	Х	Х	Х	Х	Х	Х		
	distillers wet grains	Х	Х	Х	Х	Х	Х		
	switchgrass		Х		Х	Х	Х		
	wheat straw	Х	Х	Х	Х	Х	Х		
and fraction	manure (digester gas)	Х	Х	Х	Х	Х	Х		
gasification	logging (wood) residue	Х	Х	Х	Х	Х	Х		

 Table 5-1. Priority Biofuel and Pollutant Combinations With the Most Limited Data

(An X indicates where additional data gathering and/or testing is suggested)

These results are not surprising considering biofuels have not previously been widely used in combustion sources or tested. Additional data gathering will be necessary to develop a higher quality compilation of emission factors. The following recommendations are next steps to fill in the remaining data gaps and develop higher confidence in the emission factors.

#### 5.1 <u>Collect data from outstanding data sources</u>

The end date for gathering data to be included in this study was April 2007. During the data collection, several sources that had been contacted and may have potential data did not provide information in time to be used in this study. Table 5-2 lists the additional data sources, the type of information that may be obtained, and when the information may be available. The majority of the additional information is for sources combusting biodiesel blends. One of the sources also
are burning switchgrass. This information will not fill in data gaps for the other priority biofuels, but it may increase the quality of the emission factors developed for biodiesel and switchgrass.

Facility/ Data Source	State	Biofuel	Status
Meister Cheese Company	WI	switchgrass co-fired with wood	Testing in late 2008
New York Power Authority: Poletti Power Project	NY	biodiesel in boilers blended with #6 fuel oil, blends will vary from B5 to B20	Final report due summer 2007
Iowa Municipal Utilities: Winterset and Story City	IA	biodiesel in engines, blends will be B10 and B20	Testing in early summer 2007
Houston Advanced Research Center	TX	biodiesel in engines	Ongoing research, milestone report due early summer 2007
Agricultural Utilization Research Institute	MN	Glycerin (non-priority biofuel)	Tests completed, data analysis ongoing

# Table 5-2. Potential Emissions Data Sources From Ongoing and Planned Tests for Priority Biofuels

#### 5.2 <u>Conduct additional data gathering</u>

#### **Permitted Facilities**

Due to time restraints in this study, not all states were contacted for potential sources of facilities combusting the priority biofuels. Other states may have data on permitted facilities or experimental tests using the priority biofuels. Alternately, these other states may have "state biomass initiatives" in place to manage and track the recent growth in biomass and biofuels. In addition, some of the states reviewed during this study did not have a consolidated list of facilities within the state permitted to combust biomass, or more specifically, the priority biofuels. If a consolidated list did not exist, and only a permit-by-permit search was available, this information was not gathered due to time restraints. Individual permits could be reviewed when the permits are available on the Internet.

#### Additional Journal Publications

Although an extensive literature search was performed for combustion and gasification applications on all the priority biofuels, some articles did not contain emissions data, but the reference section of the article may have included articles with relevant emissions data. A complete list of the articles reviewed has been maintained, and as time allows a thorough review of each article's reference section could be performed to identify additional articles with emissions data for priority biofuels.

#### Manufacturer Data

Several manufacturers of biomass gasifiers were contacted via telephone and e-mail during this study. However, none of these companies provided gas composition data or emissions data from boilers or engines using gasified biomass fuels. Given the interest from these manufacturers to

get facilities permitted to install and use biomass gasifiers, a direct request from a state permitting authority such as the MPCA, or other permitting authorities from the surrounding Great Lakes Regional Biomass Partnership states may encourage more emissions data for biomass gasifiers and applications using gasified biomass fuels.

### <u>Test data</u>

Corn derivatives are expected to be more widely used as biofuels, particularly in the Great Lakes Region, because corn is a significant agricultural crop in the region, and its use as a feedstock for ethanol has spurred the development of several ethanol production facilities in the area. It is likely that combustion tests will be conducted at some of these facilities. However, it is unknown the number of tests planned or the scheduling and availability of testing information. Because of the anticipated use of corn derivatives, it may be necessary for the State of Minnesota to conduct its own initial tests to develop emission factors in a more timely manner.

Although wheat straw may not be as widely used as corn derivatives, it is still expected to be a priority biofuel for Minnesota in the longer-term. However, wheat straw has significant data gaps and no additional data sources have been identified combusting this fuel in the United States. Therefore, if it is to remain on the priority biofuels list, testing will be needed to develop emission factors.

The manufacturers of gasifiers are expected to be a significant data source for emissions from gasified biomass fuels. Given the limited data on gasifier installations in the United States, the MPCA or surrounding pollution control agencies may work with manufacturers of gasifiers to sponsor emissions testing for these applications.

Even with additional information collected from outstanding sources and new sources of information, it still likely that testing may need to be conducted to obtain data on air toxics emitted from the priority biofuels. The only air toxics that data had been collected for were HCl (for corn derivatives and wheat straw) and PAH's (for biodiesel blends).

### 5.3 <u>Identification of non-priority biofuels for further study</u>

During the data gathering process, MPCA had a specific request for HCl emissions from oat hull combustion to meet the needs of a current permit application. Given that a proposed facility will co-fire oat hulls this fuel may be moved to priority status.

Additionally, data for other biofuels were gathered during this study. Table 5-3 shows data sources containing emission information or permit limit data for 19 other biofuels. None of these data were targeted as priority biofuels for this study, but these data may be useful in the event that a permit application for any of these fuels is submitted to MPCA.

1 <del></del>	ļ	1	5	Source	1	
Biofuel	Cargill Oilseeds, North Dakota (Title V Permit)	Northern Sun, North Dakota (Title V Permit)	Penn State Energy Institute, PEDA Report	Results of Boiler MACT Testing - University of Iowa	A Demonstration of Fat and Grease as an Industrial Boiler Fuel, University of Georgia	Stack Emissions Evaluation: Combustion of Crude Glycerin and Yellow Grease in an Industrial Fire Tube Boiler, AURI
Cull-Cow Carcasses / Coal	, , , , , , , , , , , , , , , , , , ,		X		0	
Cull-Cow SRMs / Coal			Х			
Feather Meal / Coal			Х			
Fed Cattle SRMs / Coal			Х			
Glycerin						Х
Hatgrow / Coal			Х			
Meat & Bone Meal / Coal			Х			
Meat & Bone Meal / Nat Gas			Х			
Meat & Bone Meal / Pulverized Coal			Х			
Oat Hulls / Coal				Х		
Pork Meal / Coal			Х			
Poultry Fat			Х		Х	
Poultry Meal / Coal			Х			
Poultry Meal / Nat Gas			Х			
Poultry Meal / Pulverized Coal			Х			
Soybean Oil			Х			
Sunflower Seed Hulls	Х	Х				
Tallow			Х		Х	
White Grease			Х		Х	
Yellow Grease	<u> </u>	<u> </u>	Х		Х	Х

## Table 5-3. Available Emission Data for Non-Priority Biofuels

#### 6.0 **REFERENCES**

- 1. Aerts, D., and K. Ragland. 1997. Co-firing switchgrass and coal in a 50 MW pulverized coal utility boiler. Final Report. Prepared for Great Lakes Regional Biomass Energy Program, Electric Power Research Institute, Madison Gas and Electric Company, Wisconsin Power and Light Company, Nebraska Public Power District.
- 2. Amos, W. Summary of Chariton Valley switchgrass co-fire testing at the Ottumwa Generating Station in Chillicothe, Iowa. Draft Milestone Report for the U.S. Department of Energy's Biomass Program and the Chariton Valley Biomass Project.
- 3. Boylan, D, D. Bransby, P. Bush, and H.A. Smith. 2001. Evaluation of switchgrass as a co-firing fuel in the southeast. Final Technical Report. DOE Cooperative Agreement No. DE-FC36-98GO10349. EPRI WO# 4603-05.
- 4. Boylan, D., V. Bush, and D. Bransby. 2000. Switchgrass cofiring: pilot scale and field evaluation. Biomass and Bioenergy 19:411-417.
- 5. Carraretto, C., A. Macor, A. Mirandola, A. Stoppato, and S. Tonon. 2004. Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energy 29:2195-2211.
- 6. Christensen, K., M. Stenholm, and H. Livbjerg. 1998. The formation of submicron aerosol particles, HCl, and SO₂ in straw-fired boilers. J. Aerosol Sci. 29:421-444.
- Comprehensive Emission Services, Inc. 2004. Emission test report for the Iowa Association of Municipal Utilities at the Sumner Municipal Utilities in Sumner, Iowa on October 6 and 7, 2004. Project No. 11504. Comprehensive Emission Services, Inc. 1112 Maple Street, West Des Moines, IA, 50265.
- 8. Hartmann, D., and M. Kaltschmitt. 1999. Electricity generation from solid biomass via co-combustion with coal: Energy and emission balances from a German case study. Biomass and Bioenergy 16:397-406.
- 9. Hustad, J., and O. Sønju. 1992. Biomass combustion in IEA countries. Biomass and Bioenergy 2(1-6):239-261.
- 10. Launhardt, T., and H. Thoma. 2000. Investigation of organic pollutants from a domestic heating system using various solid biofuels. Chemosphere 40:1149-1157.
- 11. Lin, Y.C., W.J. Lee, and H.C. Hou. PAH emissions and energy efficiency of palmbiodiesel blends fueled on diesel generator. Atmospheric Environment 40:3930-3940.
- 12. Marklund, S., E. Wilkström, G. Löfvenius, I. Fängmark, and C. Rappe. 1994. Emissions of polychlorinated compounds in combustion of biofuel. Chemosphere 28(10): 1895-1904.

- 13. Miller, B., Fuel Flexibility in Boilers for Fuel Cost Reduction and Enhanced Food Supply Security. The Energy Institute, Pennsylvania State University for the Pennyslvania Energy Development Authority. June 30, 2006.
- 14. Morey, V. 2006. Generating electricity with biomass fuels at ethanol plants. Project Milestone Report no. 3. Contract Number RD-56. University of Minnesota, St. Paul, MN.
- Pace Analytical Services, Inc. 2005. Comprehensive emissions test report, fluidized bed boiler, Corn Plus, Inc. Winnebago, Minnesota: particulate, sulfur dioxide, nitrogen oxides, carbon monoxide, total hydrocarbon and hydrogen chloride compliance testing. Test date: September 15, 2005. Pace Project No. 0507-100. Pace Analytical Services, Inc. Field Services Division, 1700 Elm Street, Suite 200, Minneapolis, MN 55414.
- Pace Analytical Services, Inc. 2006. Comprehensive emissions test report, fluidized bed boiler, Corn Plus, Inc. Winnebago, Minnesota: PM, PM10, hydrogen chloride, sulfur dioxide, total hydrocarbons, oxides of nitrogen, carbon monoxide compliance testing. Test date: July 6-7, 2006. Pace Project No. 0601-105. Pace Analytical Services, Inc. Field Services Division, 1700 Elm Street, Suite 200, Minneapolis, MN 55414.
- Plains Environmental. 2005. Boiler Stack Biodiesel Test PM/NOx/CO Measurements at South Dakota Soybean Processors. Volga, South Dakota. Test Date: October 20, 2005. Plains Environmental Project ID: SDS5263T. Plains Environmental 11180 Schoolhouse Lane, Belle Fourche, SD 57717.
- 18. Qin, X., T. Mohan, and M. El-Halwagi. 2006. Switchgrass as an alternative feedstock for power generation: integrated environmental, energy, and economic life-cycle analysis. Clean Technologies and Environmental Policy 8:233-249.
- Southworth, T., 2006. Department of Buildings and General Services Vermont Biodiesel Pilot Project: Emissions Testing of biodiesel blends with #6 fuel oil at the Waterbury State Office Complex. Prepared by State of Vermont Department of Buildings and General Services.
- 20. U.S. Environmental Protection Agency/OTAQ. Biodiesel Emissions Database version 1. Accessed online at: <u>http://www.epa.gov/otaq/models/biodsl.htm.</u> Created December 7, 2001.
- 21. Wierzbicka, A., L. Lillieblad, J. Pagels, M. Strand, A. Gudmundsson, A. Gharibi, E. Swietlicki, M. Sanati, and M. Bohgard. 2005. Particle emissions from district heating units operating on three commonly used biofuels. Atmospheric Environment 39:139-150.

## Appendix A

MEMORANDUM ON THE RECOMMENDATION OF DATABASE FORMAT FOR MPCA BIOFUEL EMISSION FACTOR DEVELOPMENT PROJECT



### **MEMORANDUM**

TO:	Heather Magee-Hill, MPCA
FROM:	John Carter and Amanda Singleton, ERG
DATE:	April 3, 2007
SUBJECT:	Recommendation of Database Format for Minnesota Biofuel Emission Factor Development Project

#### 1.0 Introduction

This memorandum presents Eastern Research Group, Inc. (ERG) review of existing database formats and presents ERG's recommendation for the database format for the Minnesota Biofuel Emission Factor Development Project. Based on this review, ERG suggests Minnesota Pollution Control Agency (MPCA) existing "Updated Minnesota Biomass Facilities Testing Database" be retained for this project. Section 2.0 of this memorandum discusses the format options ERG considered and Section 3.0 outlines the existing contents of the MPCA database. As a result of preliminary data research, ERG has identified some additional data fields and categories that may be added as data collection and entry progresses. Section 4.0 of this memorandum outlines ERG's suggested additions as well as some minor modifications to the existing links between the data tables to improve the structure of the database.

#### 2.0 Database Format Considerations

MPCA provided two existing Access databases for ERG to consider as the format for use in this project. ERG was also given the option of developing a new format of our own design. The first existing Access database, MPCA's "Updated Minnesota Biomass Facilities Testing Database," is pre-populated with quality-checked permit data from 37 facilities permitted to use biomass energy. Although the emissions test data for these permits were incomplete at the time it was submitted to ERG, these data will be made available to ERG as this project proceeds. The MPCA database was also designed to house emissions data from sources other than permits including published sources and equipment manufacturers.

The second Access database provided by MPCA is the "Biomass Published Emission Factor Summary Database" developed by the state of Michigan. This database arrived with only one example record and was designed primarily as a storehouse for data from published sources.

After significant screening-level research into biofuel use in Minnesota and a review of sources with potentially available emissions data for biofuels, ERG recommends using MPCA's "Updated Minnesota Biomass Facilities Testing Database" as the basis for the format to develop biofuels emission factors for MPCA. ERG believes an Access database is the appropriate

software for this project given the complex and interrelated nature of the data we expect to collect. ERG also believes the MPCA provides a more robust and flexible format than the Michigan database and also represents a significant amount of time and resources spent not only in its development, but in entering and checking the Minnesota biomass permit data. Where necessary, it can be easily modified to fit the specific needs of the data we will collect for this project and using it will save the time and money required to build a new database from scratch and re-enter the permit data it already contains.

#### 3.0 Database Characterization

The existing database format includes several tables and forms that allow for the entry and storage of data collected from three primary types of sources:

- 1. **Biomass Permits**: Associated tables contain permit information for facilities with units combusting biofuels, the permitted emission limits, and any available test data for various pollutants.
- 2. **Biomass Emission Factor Published Data**: Associated tables contain publicly available emission information such as journals, web-sites, or research centers, and trade associations.
- 3. **Biomass Equipment Manufacturers**: Associated tables contain a list of manufacturers, their associated equipment models, and a brief characterization of the end-use application (pyrolysis, combustion, gasification, boiler, dryer, digester, fermentation, transesterification, hydrolysis, and other). Also contains performance data and emissions test data from equipment manufacturers.

In addition to the three types of data sources, the existing database format includes several lists or "look-up" tables to provide standard naming conventions for data entry. These lists include options for selecting fuel type, fuel feed, capacity units, process type, emission limit units, pollutant type, and control equipment. Attachment A presents a list of the existing contents of these list tables. Attachment B presents a list of data fields in the primary tables for data collected from permits, published data, and equipment manufacturers.

Figure 1 presents the relationship between the Biomass Permit data table and the data lists, or look-up tables. The Biomass Emission Factor Published Data and Biomass Equipment Manufacturers Data tables will have similar relationships.



Figure 1. Example Database Relationships

#### 4.0 Suggested Database Modifications

The seven data lists or "look-up" tables provide a starting point for data collection and a method for standardizing the data formats. However, as a result of initial research, we have identified some changes to the database that will enhance its flexibility and performance in storing and manipulating the data for this project. Listed below are preliminary suggested additions and modifications to the existing database format. This list is not necessarily complete and further modifications are likely to be recommended as data collection and entry progress.

**Fuel Types**: The fuel listing does not include diesel or heating oil. Since these are both common fuels for blending with biodiesel, these fuels may be added to the fuel list. Additionally, there are various sub-types of coal fuel (e.g., low sulfur coal, powder river basin coal, anthracite coal, etc...). These coal sub-types have unique emission factors in AP-42, and blends of biofuels with various subcategories of coal may also have unique emission factors.

*Applications*: Preliminary research has resulted in emissions data for reciprocating engines burning biodiesel or biodiesel blends. "Reciprocating engine" is currently not on the list of process types, and may be added in the future.

*Data Relationships*: A primary key or set of primary keys represents the unique identification of a record. Since permit data, emission test data, publicly available information, and equipment manufacturer data can all be at the unit-specific level, we recommend adding a unit ID data field in addition to the permit number and facility identifier.

We also recommend the testing database have more than one primary key identifier in order to have a unique testing record for each unit at a facility. In addition, emission test data could be available for units without a corresponding permit number (e.g., testing data from journal articles or equipment manufacturers). For the testing table, the primary keys should include a link to the facility ID, unit ID, and test run ID, and these IDs should be related to the permit data table, manufacturer table, and publicly-available data table.

*Text Data Fields*: Several of the text description fields are not long enough (i.e., permit description field), and the text is cutoff in the middle of the description. The text is correctly stored in a "memo" data field type, which allows for long descriptions. However, a truncation of the text occurred when importing the data into this field in Access. If complete descriptions are available, we would like to include them in the revised database format.

*NAICS Codes*: The newer industry classification system is the North American Industrial Classification System (NAICS), which has replaced the SIC code system. We recommend adding a NAICS field to the following data tables: biomass permits, testing, and publicly available information.

## Attachment A. Currently Available Categories for Database Lists or "Look-up" Tables

Fuel	Fuel Feed	Process type	Units	Capacity Units	Control Equipment Choices	Pollutant			
Alfalfa	Atomized burner	Boiler	lb/1,000 lbs of exhaust gases	HP (boiler)	Centrifugal collector	1,1,1-Trichloroethane	Dibenzo(a,h) anthracene	Pentachlorodibenzo-p-dioxins, total	
Animal foils and fats	Fluidized bed	Digester	lb/day	HP (brake)	Multiple cyclone without fly ask re-injection	1,2-Ethylene dibromide	Dichlorobiphenyl	Pentachlorophenol (PCP)	
Animal oils and fats	Gas burner	Dryer	lb/hour	Kilowatts	Wet cyclone separator	2,3,7,8-Tetrachlorodibenzofuran	Dichloromethane	Perchloroethylene	
Biodiesel w/ additives	Hand fired	Fermentation	lb/MMBtu	lbs/day	Electrostatic precipitators	2,3,7,8-Tetrachlorodibenzo-p- dioxin	Dioctyl phthalate	Perylene	
Biodiesel w/ additives	Overfeed stoker	Gasifier	lb/month	lbs/hour	Fabric filter	2,4,4'-Trichlorobiphenyl	Dioxin	Phenanthrene	
Biodiesel w/out additives	Pulverized	Generator	lb/ton of feed	lbs/month	Spray tower	2,4,6-Trichlorophenol	Dysprosium	Phenol	
Biodiesel w/out additives	Screw conveyor, top feed	Hydrolysis	percent by weight	lbs/year	Venturi scrubber	2,4-Dinitrophenol	Ethylbenzene	Phosphorus (yellow or white)	
Biogas	Screw conveyor, underfeed	Pyrolysis	ppm	Megawatts	Impingement plate scrubber	2-Chloronaphthalene	Ethylene dichloride	PM	
Cherry pits	Slurry	Transesterifcation	ppmv	MMBtu's/hr (input)	HEPA and other wall filters	2-Chlorophenol	Fluoranthene	PM10	
Cherry pits	Spread stoker		ppmw	thousand pounds steam/hr	Afterburners	2-Methyl Naphthalene	Fluorene	PM2.5	
Coal			tons/day	tons/day	Flaring	2-Monochlorobiphenyl	Formaldehyde	Polychlorinated dibenzofurans, total	
Coffee grounds			tons/hour	tons/hour	Baghouse/spray dryer	2-Nitrophenol	Germanium	Polychlorinated dibenzo-p-dioxins, total	
Coke			tons/month	tons/month		4-Nitrophenol	Heptachlorobiphenyls, total Heptachlorodibenzofurans,	Potassium	
Corn cob			tons/year	tons/year		Acenaphthene	total Heptachlorodibenzo-p-	Praseodymium	
Corn gluten Corn oil			ug/cubic meter			Acetaldehyde Acetone	dioxins, total Hexachlorobiphenyls, total	Propionaldehyde Propylene dichloride	
Corn seed						Acetophenone	Hexachlorodibenzofurans, total	p-Tolualdehyde	
Corn shell						Acrolein	Hexachlorodibenzo-p- dioxins, total	Pyrene	
Corn stover/stalks Cow manure						Ammonia Anthracene	Hexanal Hydrogen chloride	Rubidium Samarium	
Distillers syrup Dried distillers						Antimony	Indeno(1,2,3-cd)pyrene	Selenium	
grain Fuel oil						Arsenic Barium	lodine Iron	Silver Sodium	
Glycerin						Benzaldehyde	Isobutyraldehyde	Solicyaldehyde	

## Attachment A. Currently Available Categories for Database Lists or "Look-up" Tables

Fuel	Fuel Feed	Process type	Units	Capacity Units	Control Equipment Choices	Pollutant			
Miscanthus						Benzene	Lead	Strontium	
Multiple									
petroleum						Benzo (a) anthracene	Lead	Styrene	
Natural gas						Benzo (a) pyrene	Lithium	Sulfur dioxide	
Nut shells						Benzo (b) fluoranthene	Manganese	Sulfuric acid	
Oat straw						Benzo (e) pyrene	Mercury	Tetrachlorobiphenyls, total	
Oats hulls						Benzo (g,h,i) perylene	Methane	Tetrachlorodibenzofurans, total	
Paper processing sludges						Benzo (k) fluoranthene	Methyl bromide	Tetrachlorodibenzo-p-dioxins, total	
Pig manure						Benzo(b+k)fluoranthene	Methyl chloride	Thorium	
Propane						Benzofluoranthenes	Methyl ethyl ketone	Tin	
RDF/pelletized waste fuels						Benzoic acid	Methylanthracene, mixed isomers	Titanium	
Rice straw						Beryllium	Molybdenum	Toluene	
Solid waste						Boron	Naphthalene	Total organic compounds (TOC)	
Soybeans (hulls)						Bromine	Neodymium	Trichloroethylene	
Sugar beets						Cadmium	Nickel	Trichlorofluoromethane	
Switchgrass						Carbazole	Niobium	Trichlorotrifluoroethane	
Tire derived fuel						Carbon dioxide	Nitrogen dioxide	Tungsten	
Turkey manure						Carbon monoxide	Nitrogen oxides	Vanadium	
Wheat middlings						Carbon tetrachloride	Octachlorodibenzofurans, total	Vinyl chloride	
Wheat straw						Chlorine	Octachlorodibenzo-p- dioxins, total	Visible Emissions	
Wood bark						Chlorobenzene	o-Tolualdehyde	Volatile organic compound (VOCs)	
Wood chips						Chloroform	o-Xylene	Yttrium	
Wood pallets						Chromium	Pentachlorobiphenyls, total	Zinc	
Wood saw dust						Chromium (VI)	Pentachlorodibenzofurans, total	Zirconium	
Wood sludge						Chrysene			
Yellow grease						Cobalt			
						Copper			
						Crotonaldehyde			
						Decachlorobiphenyl			

Testing Table	Biomass Permits Table	Permit Limits Table	Manufacturers	Biomass Equipment Manufacturers	Publicly Available Information
State	Permit Number	State	Manufacturer Name	Manufacturer Name	Publication Title
Permit Number	Facility Identifier	Permit	Manufacturer ID	Applicant Street	Primary Author Last Name
Pollutant	Lat Degrees	Pollutant	Manufacturer Street	Manufacturer City	Primary Author First Name
Arithmetic mean emission rate	Lat Minutes	Limit	Manufacturer City	Manufacturer State	Publication Date
Emission unit	Lat Seconds	Units	Manufacturer State	Manufacturer Zip	Boiler
Standard deviation	Long Degrees	Unit ID	Manufacturer Zip Code	Manufacturer Contact Last Name	Gasifier
Min test value	Long Minutes		Manufacturer Area Code	Manufacturer Contact First Name	Transesterification
Max test value	Long Seconds		Manufacturer Phone Number	Manufacturer Area Code	Other
Number of tests	Applicant Name		Manufacturer Phone Extension	Manufacturer Phone Phone	Digester
Test method	Applicant Street		Manufacturer Fax Number	Manufacturer e-mail	Pyroloysis
Test date	Applicant City		Contact Last Name	Manufacturer fax	Dryer
Duration of test in hrs	Applicant State		Contact First Name	Model Number	Fermentation
Primary control equipment	Applicant Zip		Contact Title	Date Issued	Hydrolysis
Secondary control equipment	Applicant Contact Last Name		Contact e-mail	Boiler	Document Title
Fuel throughput rate	Applicant Contact First Name		Process Type	Digester	Other Description
Units fuel throughput	Applicant Phone Area Code		Other Process Type Description	Dryer	Equipment Capacity
Heat input MMBtu per hr	Applicant Phone Phone		Model ID	Gasifier	Capacity Unit
Product throughput rate	Applicant e-mail		Maximum Heat Release Capacity	Other	
Units product throughput	Applicant fax		Thermal efficiency	Other Description	
Moisture content Bw %v	Permit Engineer Last Name		Load Control Description	Pyrolysis	
Molecular weight dry gas	Permit Engineer First Name		Air pollution control devices available	Fermentation	
Air flow	State		Primary Fuel	Transesterifcation	
Stack pressure	Equipment Manufacturer		Fuel 1	Hydrolysis	
% O2 dry	Model Number		Fuel 2		
% CO2 dry	Equipment Capacity		Fuel 3		
%CO and N dry	Capacity Units		Fuel 4		
Test quality rating	Date Issued		Emission test data		
Completeness of QA and QC	Permit Description		Particulate Matter		
Test method deviations	Other Fuel Description		PM10		
Upsets during test	Primary Fuel		Sulfur Dioxide		
Burner temp Deg F	Secondary Fuel		Nitrogen Oxides		
Primary control equipment installation date	Permit comments		Carbon Monoxide		
Primary control equipment maintenance	Tertiary fuel		VOC's		
Primary control equipment date of last					
maintenance	Other fuel or input		Metals		
Equipment ID	Process type		Acids		
Fuel Tested	Fuel feed		Other		
Run #	EPA ID		Other1		
	Facility start up date	ļ	Other2		
	Secondary Process		Other3		
	Tertiary Process		Other4		
	SIC Code		Other5		

## Appendix B

**TELEPHONE CONTACT LIST** 

#### Appendix B Telephone Contact List

#### **BIOFUELS SOURCES**

#### **Contacts**

Aerts, Danny. University of Wisconsin-Madison. Contacted April 18, 2007. Ahern, Mike. Ohio Environmental Protection Agency. Contacted April 20, 2007. Allen, Rasha. Kansas Department of Health and Environment. Contacted April 3, 2007. Anex, Robert. Iowa State University. Contacted March 23, 2007. Bachman, Tom. North Dakota Department of Health, Division of Air Quality. Contacted April 3, 2007. Baileys, Ron. PRM Energy (manufacturer of gasifiers). Contacted April 6, 2007. Blue, Pam. Michigan Department of Environmental Quality. Contacted April 25, 2007. Boman, Mindy. Kansas Department of Health and Environment. Contacted April 20, 2007. Boyd, Rodney. McMinnville Electric Generating Station. Contacted April 9, 2007. Bullock, Dan. Houston Advanced Research Center (HARC). Contacted April 10, 2007. Bush, James. Kentucky Governor's Office of Energy Policy – Biofuels. Contacted April 24, 2007. Cerio, Robert. National Biodiesel Board. Contacted April 9, 2007. Comer, Kevin. Anteres Group (Chariton Valley Switchgrass Project). Contacted April 10, 2007. Cook, David. Naval Facilities Engineering Service Center. Contacted April 30, 2007. Council of Industrial Boiler Owners (CIBO). Contacted April 3, 2007. Crow, Brian. Iowa Department of Natural Resources. Contacted March 22, 2007. Dahg, Paul. Vermont Biofuels Association. Contacted April 9, 2007. Drewry, George. Badger State Ethanol. Contacted April 24, 2007. Duft, Ken. Washington State Straw to Energy Project. Contact April 12, 2007. Fielder, Phillip. Oklahoma Department of Environmental Quality – Air Quality Division. Contacted April 25, 2007 Fisher, Mark. Oregon Department of Environmental Quality. Contacted April 5, 2007. Geise, Rick. Griffin Industries (potential end-user of biodiesel in boilers). Contacted April 30, 2007. Groschen, Ralph. Minnesota Department of Agriculture. Contacted March 29, 2007. Healey, Dale. South Dakota Department of Environment and Natural Resources. Contacted April 3, 2007.

Hendrickson, Erik. Texas Commission of Environmental Quality. Contacted April 25, 2007.

Hensley, Brian. Tennessee Department of Economic and Community

Development Energy Division. Contacted April 24, 2007.

Illinois Environmental Protection Agency. Submitted Freedom of Information Act request for all facilities in Illinois combusting biomass on April 12, 2007.

Jarnefeld, Judy. New York State Energy Research and Development Authority (NYSERDA). Contacted April 6, 2007.

Johnson, Thomas. Southern Company (utility). Contacted April 19, 2007.

Krishna, CR. Brookhaven National Laboratory - Biofuel Research - Energy Resources Division. Contacted April 25, 2007.

Lemke, Dan. Agricultural Utilization Research Institute. Contacted March 28, 2007.

Mann, Clarence. Alabama Department of Economic and Community Affairs. Energy, Weatherization and Technology Division. Contacted April 24, 2007.

McQuigg, K. Prim Energy (manufacturer of gasifiers). Contacted April 6, 2007.

Meister Cheese Company. Contacted April, 2007.

Miller, Bruce. Penn State Energy Institute. Contacted April 20, 2007.

Milster, Ferman. University of Iowa Utilities and Energy Management. Contacted April 19, 2007.

Moyer, Heather. National Defense Center for Environmental Excellence. Contacted April 11, 2007.

Namovicz, Chris. U.S. Energy Information Administration. Contacted March 24, 2007.

Peiffer, Erin. Iowa Municipal Utilities Authority. Contacted April 9, 2007.

Phillips, B. Emery Energy (manufacturer of gasifiers). Contacted April 6, 2007.

Pichard, Errin. Florida Dept of Environmental Protection - Division of Air Resource Management. Contacted April 26, 2007.

Poley, Leslie. National Renewal Energy Laboratory. Contacted May 7, 2007.

Preston, Lynn. Tandus Flooring. Contacted March 23, 2007.

Rich, Ben. North Carolina State Energy Office. Contacted March 23, 2007.

Saltzman, Michael. New York Power Authority, Polletti Power Project. Contacted April 10, 2007.

Smeenk, Jerod. Frontline Bioenergy (manufacturer of gasifers). Contacted March 26, 2007.

Tonsor, Shauna. Michigan Department of Labor and Economic Growth - Energy Office. Contacted April 25, 2007.

Urbanksi, Ann and Don Faith, III. Wisconsin Department of Natural Resources. Contacted April 3, 2007.

## Appendix C

DETAILED LISTING OF FUEL ANALYSIS CITATIONS

	Dried Distillers Grains with		Dried Distillers Grains without	Distillers Wet	q		G	64		
Evel Nete	Solul	bles	Solubles	Grains	Syrup		Col	rn Stover	•	
Fuel Note										
As received	10.12	0.27	12.25	(1.4)	(7.20	( 15	25.00	0.14		
Moisture, %	10.12	9.27	13.35	64.46	67.29	6.15	35.00	9.14		
Ash, %	3.41	4.16	1.96	0.97	2.31	6.31	3.25	6.81		
Higher heating value, Btu/lb	8,368	8,459	8,473	3,349	2,765	7,235	4,623	7,057		
Moisture Free	2.00			2.50	= ^ 2	( 72				11.62
Ash, %	3.89	4.13	2.24	2.58	7.02	6.73		7.64	5.60	11.63
Higher heating value, Btu/lb	9,349	9,422	9,848	9,438	8,482	7,709		7,768	9,175	7,867
Lower heating value, Btu/lb	8,703			8,819	7,819	7,192				
Proximate										
Volatile matter, %	82.50			83.18	81.71	66.58	54.60			72.57
Fixed Carbon, %	12.84			13.58	10.32	26.65	7.15			21.26
Chlorine, µg/g	1,757			1,673	3,459	984				
Chlorine, %										
Chlorine, ppm										
Mercury, µg/g	< 0.010			< 0.10	< 0.012	< 0.010				
Mercury, mg/kg										
Ultimate										
Carbon, %	50.24			52.53	43.12	45.48	42.50			46.64
Hydrogen, %	6.89			6.60	7.07	5.52	5.04			5.66
Nitrogen, %	4.79			5.35	2.63	0.69	0.75			0.67
Oxygen, %	33.42			32.28	39.21	41.52	42.60	0.04		39.59
Sulfur, %	0.77	0.45	0.40	0.66	0.96	0.04	0.18			0.08
Metals, mg/kg										
Arsenic	<3.20			<3.10	<3.20	2.50				
Barium										
Beryllium	< 0.093			< 0.093	< 0.11	< 0.089				
Cadmium	< 0.046			< 0.50	< 0.53	< 0.45				
Chromium	0.50			< 0.79	0.75	< 0.45				
Lead	< 0.046			< 0.50	< 0.53	0.46				
Manganese	15.95			12.05	34.93	23.40				
Nickel	0.87			<1.20	1.97	< 0.45				
Phosphorus	-			-	-	-				
Potassium	-			_						
Selenium	1.80			<1.80	<1.60	<1.30			1	
Silver	1.00			-1.00	-1.00	-1.50				
Reference	8	2	2	8	8	8	5	2	10	14

Parameter		Switchgrass (pellets)					
Fuel Note			Wheat S				· · · · · · · · · · · · · · · · · · ·
As received							9.30
Moisture, %	8.26		8-23		8.63		2.90
Ash, %	10.40		2-6		12.45		7,381
Higher heating value, Btu/lb	6,839		6,032		7,134		
Moisture Free							
Ash, %	11.33	8.90				10.22	
Higher heating value, Btu/lb	7,375	7,544		8,143		7,481	
Lower heating value, Btu/lb							
Proximate							
Volatile matter, %		19.80	70-80		63.96	69.38	72.30
Fixed Carbon, %					14.96	21.54	15.50
Chlorine, µg/g							
Chlorine, %				0.15			
Chlorine, ppm							1,075
Mercury, µg/g							
Mercury, mg/kg							
Ultimate							
Carbon, %		41.80	40.10	46.20	42.11	43.88	51.70
Hydrogen, %		5.50	5.20	5.80	6.53	5.26	7.00
Nitrogen, %		0.70	0.40	0.59	0.58	0.63	0.20
Oxygen, %	0.08	35.50	40.00	41.30	40.51	38.75	28.90
Sulfur, %		-	0.1-0.3	0.08	0.32	0.16	0.00
Metals, mg/kg							
Arsenic							
Barium							
Beryllium							
Cadmium							
Chromium							
Lead							
Manganese							
Nickel							
Phosphorus							
Potassium							
Selenium							
Silver							
Reference	2	5	13	9	6	14	7

Parameter	Switchgrass (loose)										
Fuel Note	loose	loose (hammermilled)	loose	loose	mechanically harvested	manually harvested	loose				
As received											
Moisture, %		9.60	6.34	11.00	9.53	8.89					
Ash, %		3.10	5.35	4.80	5.95	3.93					
Higher heating value, Btu/lb		7,322	7,458	7,082	7,333	7,421					
Moisture Free											
Ash, %	4.5 - 5.8		5.70	5.30	6.58	4.31	5.84				
Higher heating value, Btu/lb	9,540		7,965	7,962	8,105	8,145	8,040				
Lower heating value, Btu/lb											
Proximate											
Volatile matter, %		76.20	73.84	84.00	76.30	89.77	74.21				
Fixed Carbon, %		11.10	14.48	10.70	17.12	5.92	20.64				
Chlorine, µg/g											
Chlorine, %			0.14	0.03							
Chlorine, ppm		1,300									
Mercury, µg/g											
Mercury, mg/kg			< 0.1								
Ultimate											
Carbon, %		49.60	48.41	42.31	40.54	43.55	46.74				
Hydrogen, %		6.50	5.06	5.12	5.28	5.13	5.76				
Nitrogen, %		0.30	0.56	0.71	0.92	0.79	0.76				
Oxygen, %		30.80	40.16	35.97	37.57	37.61	40.70				
Sulfur, %	0.12	0.10	0.12	0.16	0.20	0.10	0.09				
Metals, mg/kg											
Arsenic			1.20								
Barium											
Beryllium											
Cadmium			<5								
Chromium			58.00								
Lead			40.00								
Manganese											
Nickel											
Phosphorus											
Potassium			0.81								
Selenium			4.00								
Silver			<10								
Reference	10	7	3	1	4	4	14				

Parameter	Pure Biodies	el (B100)	Biodiesel Blend (B5)	Biodiesel Blend (B10)	Biodiesel Blend (B20)
Fuel Note					
As received					
Moisture, %					
Ash, %					
Higher heating value, Btu/lb					
Moisture Free					
Ash, %	< 0.02	0.10			
Higher heating value, Btu/lb	20,852	17,189	18,259	18,353	18,223
Lower heating value, Btu/lb					
Proximate					
Volatile matter, %		99.60			
Fixed Carbon, %		0.30			
Chlorine, µg/g					
Chlorine, %					
Chlorine, ppm		1,100			
Mercury, µg/g					
Mercury, mg/kg					
Ultimate					
Carbon, %		76.70	86.28	86.09	85.06
Hydrogen, %		0.10	10.50	10.31	10.64
Nitrogen, %		12.30			
Oxygen, %		10.80	1.05	1.76	2.47
Sulfur, %	< 0.05	0.00	1.86	1.64	1.50
Metals, mg/kg					
Arsenic					
Barium					
Beryllium					
Cadmium					
Chromium					
Lead					
Manganese					
Nickel					
Phosphorus					
Potassium	< 0.0001				
Selenium					
Silver					
Reference	10	7	12	12	12

#### **References for Appendix C:**

1. Aerts, D., and K. Ragland. 1997. Co-firing switchgrass and coal in a 50 MW pulverized coal utility boiler. Final Report. Prepared for Great Lakes Regional Biomass Energy Program, Electric Power Research Institute, Madison Gas and Electric Company, Wisconsin Power and Light Company, Nebraska Public Power District.

2. Agricultural Utilization Research Institute. AURI Fuels Initiative - Agricultural Renewable Solid Fuels Data. <u>http://www.auri.org/research/fuels/pdfs/fuels.pdf</u>

3. Amos, W. Summary of Chariton Valley switchgrass co-fire testing at the Ottumwa Generating Station in Chillicothe, Iowa. Draft Milestone Report for the U.S. Department of Energy's Biomass Program and the Chariton Valley Biomass Project.

4. Boylan, D. et al. 2001. Evaluation of Switchgrass as a co-firing fuel in the Southeast. Final Technical Report. DOE Cooperative Agreement No. DE-FC36-98GO10349. EPRI WO# 4603-05.

5. Demirbas, A. Sustainable Cofiring of Biomass with Coal. Energy Conversion and Management. V44, pp. 1465-1479. 2003.

6. Liao, C et al. Chemical Elemental Characteristics of Biomass Fuels in China. Biomass and Bioenergy. V27, pp. 119-130. 2004.

7. Miller, B. Fuel Flexibility in Boilers for Fuel Cost Reduction and Enhanced Food Supply Security. The Energy Institute, Pennsylvania State University for the Pennsylvania Energy Development Authority. June 30, 2006.

8. Morey, V. Generating Electricity with Biomass Fuels at Ethanol Plants. University of Minnesota. Milestone Report June 1, 2006.

9. Nordin A. Chemical Elemental Characteristics of Biomass Fuels. Biomass and Bioenergy v6 no5. 1994.

10. Oak Ridge National Laboratory. "Bioenergy Feedstock Characteristics." <u>http://bioenergy.ornl.gov/papers/misc/biochar_factsheet.html</u>

11. RD56: Generating Electricity with Biomass Fuels atEthanol Plants report for Task 2, "Analysis of Bioass Co-Product Streams." 12/12/06.

12. Southworth, T., 2006. Department of Buildings and General Services Vermont Biodiesel Pilot Project: Emissions Testing of biodiesel blends with #6 fuel oil at the Waterbury State Office Complex. Prepared by State of Vermont Department of Buildings and General Services.

13. Union of the Electriciy Industry. Co-firing of Biomass and Waste with Coal. March 1997. Note: The straw is an unspecified type, but it is likely wheat and it was included in the average for this fuel composition summary.

14. US Department of Energy Biofuels Program. "Biomass Feedstock Composition and Property Database." <u>http://www1.eere.energy.gov/biomass/feedstock_databases.html</u>. For corn stover, all values are based on an average of 12 test results listed in the database. For wheat straw only a single test was in the database. For switchgrass the HHV, Ash, Volatile Matter, and Fixed Carbon are based on the average of 12 test results listed in the database, Oxygen and Sulfur were based on 14 tests, while Carbon and Hydrogen are based on 30 tests, and Nitrogen was based on 32 tests.

## Appendix D

SUMMARY OF EMISSION FACTORS FOR INDIVIDUAL TESTS AND JOURNAL ARTICLES

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
19	T000005	NA ^a	NA	biodiesel	NA	#6 fuel oil with 10% biodiesel	СО	2.12E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 10% biodiesel	NOx	3.13E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 10% biodiesel	$SO_2$	1.67E+00	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 20% biodiesel	СО	1.32E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 20% biodiesel	NOx	2.74E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 20% biodiesel	$SO_2$	1.56E+00	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 5% biodiesel	СО	1.63E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 5% biodiesel	NOx	3.14E-01	Measured data	None specified
19	T000005	NA	NA	biodiesel	NA	#6 fuel oil with 5% biodiesel	$SO_2$	1.57E+00	Measured data	None specified
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-45	biodiesel	NA	100% biodiesel	СО	6.11E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-48	biodiesel	NA	100% biodiesel	СО	7.06E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-43	biodiesel	NA	100% biodiesel	СО	2.19E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-47	biodiesel	NA	100% biodiesel	СО	1.24E-01	Measured data	Oxidation catalyst
20	950400	950400A	950400- 225	biodiesel	NA	100% biodiesel	СО	6.64E-01	Measured data	None
20	950400	950400ADOC	950400- 228	biodiesel	NA	100% biodiesel	СО	2.26E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-45	biodiesel	NA	100% biodiesel	NOx	5.16E+00	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-48	biodiesel	NA	100% biodiesel	NOx	5.33E+00	Measured data	None
20	950400	950400A	950400- 225	biodiesel	NA	100% biodiesel	NOx	6.32E+00	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-43	biodiesel	NA	100% biodiesel	NOx	3.62E+00	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-47	biodiesel	NA	100% biodiesel	NOx	4.88E+00	Measured data	Oxidation catalyst

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
20	950400	950400ADOC	950400- 228	biodiesel	NA	100% biodiesel	NOx	6.71E+00	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-45	biodiesel	NA	100% biodiesel	PM	1.47E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-48	biodiesel	NA	100% biodiesel	PM	2.26E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-43	biodiesel	NA	100% biodiesel	PM	6.90E-02	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-ВС	2000-01- 1969-47	biodiesel	NA	100% biodiesel	PM	1.01E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-45	biodiesel	NA	100% biodiesel	VOC as THC	2.95E-02	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-48	biodiesel	NA	100% biodiesel	VOC as THC	1.57E-01	Measured data	None
20	950400	950400A	950400- 225	biodiesel	NA	100% biodiesel	VOC as THC	6.45E-02	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-43	biodiesel	NA	100% biodiesel	VOC as THC	5.52E-02	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-47	biodiesel	NA	100% biodiesel	VOC as THC	7.67E-02	Measured data	Oxidation catalyst
20	950400	950400ADOC	950400- 228	biodiesel	NA	100% biodiesel	VOC as THC	1.94E-02	Measured data	Oxidation catalyst
13	J012	NA	05/31/06	biodiesel	NA	100% biodiesel from soya	СО	0.104	Measured data	None specified
13	J012	NA	05/31/06	biodiesel	NA	100% biodiesel from soya	NOx	0.104	Measured data	None specified
13	J012	NA	05/31/06	biodiesel	NA	100% biodiesel from soya	$SO_2$	0.00	Measured data	None specified
17	T000009	NA	NA	biodiesel	NA	100% biodiesel from soya	СО	5.71E-03	Measured data	None specified
17	T000009	NA	NA	biodiesel	NA	100% biodiesel from soya	NOx	1.09E-01	Measured data	None specified
17	T000009	NA	NA	biodiesel	NA	100% biodiesel from soya	PM	2.11E-03	Measured data	None specified
11	J004	NA	NA	biodiesel	NA	100% palm biodiesel	PAH	6.08E-05	Measured data	None
11	J004	NA	NA	biodiesel	NA	100% palm biodiesel	PAH	5.71E-05	Measured data	None
11	J004	NA	NA	biodiesel	NA	100% palm biodiesel	РАН	2.66E-05	Measured data	None
11	J004	NA	NA	biodiesel	NA	100% palm biodiesel	PM	6.72E-02	Measured data from graph	None
7	T000006	NA	NA	biodiesel	NA	diesel with 10% biodiesel	NOx	6.95E+00	Measured data	None specified

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
7	T000006	NA	NA	biodiesel	NA	diesel with 10% biodiesel	NOx	4.18E+00	Measured data	None specified
7	T000006	NA	NA	biodiesel	NA	diesel with 10% biodiesel	PM	1.30E-01	Measured data	None specified
7	T000006	NA	NA	biodiesel	NA	diesel with 10% biodiesel	PM	5.00E-02	Measured data	None specified
20	950400	950400A	950400- 226	biodiesel	NA	diesel with 30% biodiesel	СО	7.03E-01	Measured data	None
20	950400	950400ADOC	950400- 229	biodiesel	NA	diesel with 30% biodiesel	СО	1.87E-01	Measured data	Oxidation catalyst
20	950400	950400A	950400- 226	biodiesel	NA	diesel with 30% biodiesel	NOx	5.42E+00	Measured data	None
20	950400	950400ADOC	950400- 229	biodiesel	NA	diesel with 30% biodiesel	NOx	6.06E+00	Measured data	Oxidation catalyst
20	950400	950400A	950400- 226	biodiesel	NA	diesel with 30% biodiesel	VOC as THC	5.80E-02	Measured data	None
20	950400	950400ADOC	950400- 229	biodiesel	NA	diesel with 30% biodiesel	VOC as THC	1.94E-02	Measured data	Oxidation catalyst
11	J004	NA	NA	biodiesel	NA	premium diesel	PAH	3.91E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel	PAH	3.82E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel	PAH	3.82E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel	PM	5.21E-02	Measured data from graph	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 10% palm biodiesel	РАН	3.50E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 10% palm biodiesel	PAH	3.29E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 10% palm biodiesel	PAH	3.21E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 10% palm biodiesel	PM	2.56E-02	Measured data from graph	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 20% palm biodiesel	PAH	2.84E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 20% palm biodiesel	PAH	2.81E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 20% palm biodiesel	РАН	2.73E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 20% palm biodiesel	PM	4.17E-02	Measured data from graph	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 30% palm biodiesel	РАН	2.58E-03	Measured data	None

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
11	J004	NA	NA	biodiesel	NA	premium diesel with 30% palm biodiesel	РАН	2.36E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 30% palm biodiesel	РАН	2.10E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 30% palm biodiesel	PM	4.98E-02	Measured data from graph	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 50% palm biodiesel	РАН	1.96E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 50% palm biodiesel	РАН	1.83E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 50% palm biodiesel	РАН	1.64E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 50% palm biodiesel	PM	5.79E-02	Measured data from graph	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 75% palm biodiesel	РАН	1.94E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 75% palm biodiesel	РАН	1.52E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 75% palm biodiesel	РАН	1.19E-03	Measured data	None
11	J004	NA	NA	biodiesel	NA	premium diesel with 75% palm biodiesel	PM	6.59E-02	Measured data from graph	None
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-46	biodiesel	NA	pure diesel	СО	6.42E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-50	biodiesel	NA	pure diesel	СО	1.13E+00	Measured data	None
20	950400	950400A	950400- 224	biodiesel	NA	pure diesel	СО	7.10E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-44	biodiesel	NA	pure diesel	СО	2.22E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-49	biodiesel	NA	pure diesel	СО	1.85E-01	Measured data	Oxidation catalyst
20	950400	950400ADOC	950400- 227	biodiesel	NA	pure diesel	СО	2.26E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-46	biodiesel	NA	pure diesel	NOx	5.15E+00	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-50	biodiesel	NA	pure diesel	NOx	5.00E+00	Measured data	None
20	950400	950400A	950400- 224	biodiesel	NA	pure diesel	NOx	6.19E+00	Measured data	None

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-44	biodiesel	NA	pure diesel	NOx	4.10E+00	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-49	biodiesel	NA	pure diesel	NOx	4.71E+00	Measured data	Oxidation catalyst
20	950400	950400ADOC	950400- 227	biodiesel	NA	pure diesel	NOx	6.52E+00	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-50	biodiesel	NA	pure diesel	PM	2.08E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-44	biodiesel	NA	pure diesel	РМ	1.11E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-BC	2000-01- 1969-49	biodiesel	NA	pure diesel	РМ	2.69E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-A	2000-01- 1969-46	biodiesel	NA	pure diesel	VOC as THC	2.07E-01	Measured data	None
20	2000-01-1969	2000-01- 1969-В	2000-01- 1969-50	biodiesel	NA	pure diesel	VOC as THC	4.66E-01	Measured data	None
20	950400	950400A	950400- 224	biodiesel	NA	pure diesel	VOC as THC	7.74E-02	Measured data	None
20	2000-01-1969	2000-01- 1969-AC	2000-01- 1969-44	biodiesel	NA	pure diesel	VOC as THC	1.30E-01	Measured data	Oxidation catalyst
20	2000-01-1969	2000-01- 1969-ВС	2000-01- 1969-49	biodiesel	NA	pure diesel	VOC as THC	1.62E-01	Measured data	Oxidation catalyst
20	950400	950400ADOC	950400- 227	biodiesel	NA	pure diesel	VOC as THC	1.94E-02	Measured data	Oxidation catalyst
20	10500053-005	NA	NA	biodiesel	NA	not specified	PM10	3.90E-03	None specified	None specified
14	T000008	NA	NA	corn derivatives	corn stover	100% biomass	NOx	5.60E-01	Modeled	None
14	T000008	NA	NA	corn derivatives	distillers dried grains with solubles	100% biomass	NOx	1.09E+00	Modeled	None
14	T000008	NA	NA	corn derivatives	distillers wet grains	100% biomass	NOx	3.02E+00	Modeled	None
14	T000008	NA	NA	corn derivatives	syrup	100% biomass	NOx	9.40E-01	Modeled	None
14	T000008	NA	NA	corn derivatives	corn stover	100% biomass	SOx	1.00E-01	Modeled	None
14	T000008	NA	NA	corn derivatives	distillers dried grains with solubles	100% biomass	SOx	1.48E+00	Modeled	None

Appendix D.	Summary o	of Emission	<b>Factors fo</b>	r Individual Tests
-------------	-----------	-------------	-------------------	--------------------

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
14	T000008	NA	NA	corn derivatives	distillers wet grains	100% biomass	SOx	2.31E+00	Modeled	None
14	T000008	NA	NA	corn derivatives	syrup	100% biomass	SOx	1.43E+00	Modeled	None
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 19% by heat input of natural gas	HCl	3.14E-03	Measured data	Fabric filter
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 19% by heat input of natural gas	NOx	2.90E-03	Measured data	Fabric filter
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 19% by heat input of natural gas	PM	2.71E-02	Measured data	Fabric filter
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 19% by heat input of natural gas	$SO_2$	1.99E-02	Measured data	Fabric filter
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 19% by heat input of natural gas	THC as VOC	4.41E-04	Measured data	Fabric filter
15	04300041-008	NA	09/15/2005	corn derivatives	syrup	syrup with 30% by heat input of natural gas	СО	2.82E-03	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	Syrup	syrup with 30% by heat input of natural gas	СО	2.00E-03	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	HCl	2.26E-02	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	NOx	3.33E-02	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	PM	2.40E-02	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	PM10	1.52E-01	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	$SO_2$	1.17E-01	Measured data	Fabric filter
16	04300041-008	NA	07/06/2006	corn derivatives	syrup	syrup with 30% by heat input of natural gas	THC as VOC	9.40E-03	Measured data	Fabric filter
2	T000003	NA	NA	switchgrass	NA	coal with 1% switchgrass by heat	СО	4.30E-03	Measured data	ESP
2	T000003	NA	NA	switchgrass	NA	coal with 1% switchgrass by heat	NOx	3.94E-01	Measured data	ESP
2	T000003	NA	NA	switchgrass	NA	coal with 1% switchgrass by heat	PM	4.60E-02	Measured data	ESP
2	T000003	NA	NA	switchgrass	NA	coal with 1% switchgrass by heat	PM10	4.00E-02	Measured data	ESP
2	T000003	NA	NA	switchgrass	NA	coal with 1% switchgrass by heat	$SO_2$	6.56E-01	Measured data	ESP

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
1	T000004	NA	NA	switchgrass	NA	coal with 10.3% switchgrass (hammermill) by wt	NOx as NO	3.70E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.3% switchgrass (hammermill) by wt	$SO_2$	2.28E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	NOx as NO	4.93E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	NOx as NO	3.63E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	NOx as NO	3.63E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	$SO_2$	2.37E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	$SO_2$	1.99E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.4% switchgrass (tub grinder) by wt	$SO_2$	1.84E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.5% switchgrass (tub grinder) by wt	NOx as NO	4.30E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.5% switchgrass (tub grinder) by wt	$SO_2$	2.28E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.6% switchgrass (tub grinder) by wt	NOx as NO	4.09E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 10.6% switchgrass (tub grinder) by wt	$SO_2$	2.30E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 11.6% switchgrass (hammermill) by wt	NOx as NO	4.21E-01	Measured data	ESP

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
1	T000004	NA	NA	switchgrass	NA	coal with 11.6% switchgrass (hammermill) by wt	SO ₂	2.29E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 15.3% switchgrass (hammermill) by wt	$SO_2$	3.03E+00	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 15.3% switchgrass (tub grinder) by wt	NOx as NO	4.70E-01	Measured data	ESP
3	T000002	PW-5	NA	switchgrass	NA	coal with 2.2% switchgrass	NOx	5.50E-01	Measured data	ESP
3	T000002	PW-5	NA	switchgrass	NA	coal with 2.2% switchgrass	$SO_2$	3.43E+00	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 2.68% switchgrass	NOx	6.50E-01	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 2.68% switchgrass	$SO_2$	2.30E+00	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 3.32% switchgrass	NOx	6.10E-01	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 3.32% switchgrass	$SO_2$	2.32E+00	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 3.37% switchgrass	NOx	7.20E-01	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 3.37% switchgrass	$SO_2$	2.36E+00	Measured data	ESP
3	T000002	Black-2	NA	switchgrass	NA	coal with 3.52% switchgrass	NOx	6.60E-01	Measured data	ESP
3	T000002	Black-2	NA	switchgrass	NA	coal with 3.52% switchgrass	$SO_2$	2.59E+00	Measured data	ESP
3	T000002	Black-1	NA	switchgrass	NA	coal with 3.65% switchgrass	NOx	5.80E-01	Measured data	ESP
3	T000002	Black-1	NA	switchgrass	NA	coal with 3.65% switchgrass	$SO_2$	2.74E+00	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 3.73% switchgrass	NOx	6.60E-01	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 3.73% switchgrass	SO ₂	2.33E+00	Measured data	ESP
3	T000002	Blue out -2	NA	switchgrass	NA	coal with 3.96% switchgrass	NOx	6.10E-01	Measured data	ESP
3	T000002	Blue out -1	NA	switchgrass	NA	coal with 3.96% switchgrass	NOx	5.60E-01	Measured data	ESP

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
3	T000002	Blue out -2	NA	switchgrass	NA	coal with 3.96% switchgrass	$SO_2$	2.65E+00	Measured data	ESP
3	T000002	Blue out -1	NA	switchgrass	NA	coal with 3.96% switchgrass	$SO_2$	2.64E+00	Measured data	ESP
3	T000002	Blue out -1	NA	switchgrass	NA	coal with 3.98% switchgrass	NOx	7.00E-01	Measured data	ESP
3	T000002	Blue out -1	NA	switchgrass	NA	coal with 3.98% switchgrass	$SO_2$	2.64E+00	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 3.99% switchgrass	NOx	6.40E-01	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 3.99% switchgrass	$SO_2$	2.30E+00	Measured data	ESP
3	T000002	Blue in - 1	NA	switchgrass	NA	coal with 4.09% switchgrass	NOx	6.90E-01	Measured data	ESP
3	T000002	Blue in - 1	NA	switchgrass	NA	coal with 4.09% switchgrass	$SO_2$	2.52E+00	Measured data	ESP
3	T000002	Blue in - 2	NA	switchgrass	NA	coal with 4.17% switchgrass	NOx	5.90E-01	Measured data	ESP
3	T000002	Blue in - 2	NA	switchgrass	NA	coal with 4.17% switchgrass	$SO_2$	2.61E+00	Measured data	ESP
3	T000002	PW-4	NA	switchgrass	NA	coal with 4.49% switchgrass	NOx	5.30E-01	Measured data	ESP
3	T000002	PW-4	NA	switchgrass	NA	coal with 4.49% switchgrass	$SO_2$	3.37E+00	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 4.63% switchgrass	NOx	8.00E-01	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 4.63% switchgrass	$SO_2$	2.28E+00	Measured data	ESP
3	T000002	Red-3	NA	switchgrass	NA	coal with 4.66% switchgrass	NOx	6.90E-01	Measured data	ESP
3	T000002	Red-3	NA	switchgrass	NA	coal with 4.66% switchgrass	$SO_2$	2.35E+00	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 4.75% switchgrass	NOx	5.90E-01	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 4.75% switchgrass	$SO_2$	2.31E+00	Measured data	ESP
18	J009	NA	NA	switchgrass	NA	coal with 5% switchgrass	СО	7.75E-02	Modeled	None
18	J009	NA	NA	switchgrass	NA	coal with 5% switchgrass	SOx	4.90E+00	Modeled	None
3	T000002	Yellow-1	NA	switchgrass	NA	coal with 5.31% switchgrass	NOx	5.80E-01	Measured data	ESP

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
3	T000002	Yellow-1	NA	switchgrass	NA	coal with 5.31% switchgrass	SO ₂	2.65E+00	Measured data	ESP
3	T000002	PW-3	NA	switchgrass	NA	coal with 5.34% switchgrass	NOx	6.40E-01	Measured data	ESP
3	T000002	PW-3	NA	switchgrass	NA	coal with 5.34% switchgrass	SO ₂	2.25E+00	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 5.54% switchgrass	NOx	6.60E-01	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 5.54% switchgrass	SO ₂	2.36E+00	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 5.57% switchgrass	NOx	5.20E-01	Measured data	ESP
3	T000002	PW-2	NA	switchgrass	NA	coal with 5.57% switchgrass	SO ₂	3.32E+00	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 5.76% switchgrass	NOx	6.50E-01	Measured data	ESP
3	T000002	PW-1	NA	switchgrass	NA	coal with 5.76% switchgrass	SO ₂	3.21E+00	Measured data	ESP
3	T000002	Black-1	NA	switchgrass	NA	coal with 5.93% switchgrass	NOx	5.00E-01	Measured data	ESP
3	T000002	Black-1	NA	switchgrass	NA	coal with 5.93% switchgrass	SO ₂	3.34E+00	Measured data	ESP
3	T000002	Black-3	NA	switchgrass	NA	coal with 5.94% switchgrass	NOx	6.30E-01	Measured data	ESP
3	T000002	Black-3	NA	switchgrass	NA	coal with 5.94% switchgrass	$SO_2$	3.30E+00	Measured data	ESP
3	T000002	Blue in - 1	NA	switchgrass	NA	coal with 6.51% switchgrass	NOx	5.00E-01	Measured data	ESP
3	T000002	Blue in - 1	NA	switchgrass	NA	coal with 6.51% switchgrass	$SO_2$	3.08E+00	Measured data	ESP
3	T000002	Blue out - 2	NA	switchgrass	NA	coal with 6.54% switchgrass	$SO_2$	3.07E+00	Measured data	ESP
3	T000002	PW-3	NA	switchgrass	NA	coal with 6.57% switchgrass	NOx	5.30E-01	Measured data	ESP
3	T000002	PW-3	NA	switchgrass	NA	coal with 6.57% switchgrass	SO ₂	3.29E+00	Measured data	ESP
3	T000002	Blue out - 1	NA	switchgrass	NA	coal with 6.63% switchgrass	NOx	6.10E-01	Measured data	ESP
3	T000002	Blue out - 1	NA	switchgrass	NA	coal with 6.63% switchgrass	SO ₂	2.93E+00	Measured data	ESP

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
3	T000002	Blue in - 2	NA	switchgrass	NA	coal with 6.76% switchgrass	NOx	6.00E-01	Measured data	ESP
3	T000002	Blue in - 2	NA	switchgrass	NA	coal with 6.76% switchgrass	$SO_2$	2.96E+00	Measured data	ESP
3	T000002	Black-2	NA	switchgrass	NA	coal with 6.84% switchgrass	NOx	5.10E-01	Measured data	ESP
3	T000002	Black-2	NA	switchgrass	NA	coal with 6.84% switchgrass	SO ₂	3.40E+00	Measured data	ESP
3	T000002	Black-4	NA	switchgrass	NA	coal with 7.06% switchgrass	NOx	6.20E-01	Measured data	ESP
3	T000002	Black-4	NA	switchgrass	NA	coal with 7.06% switchgrass	$SO_2$	3.38E+00	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 7.25% switchgrass	NOx	4.80E-01	Measured data	ESP
3	T000002	Red-1	NA	switchgrass	NA	coal with 7.25% switchgrass	$SO_2$	3.53E+00	Measured data	ESP
13	J012	NA	05/11/06	switchgrass	NA	coal with 26% switchgrass	СО	1.02	Measured data	None
13	J012	NA	05/11/06	switchgrass	NA	coal with 26% switchgrass	NOx	0.68	Measured data	None
13	J012	NA	05/11/06	switchgrass	NA	coal with 26% switchgrass	$SO_2$	0.62	Measured data	None
1	T000004	NA	NA	switchgrass	NA	coal with 7.8% switchgrass (hammermill) by wt	NOx as NO	4.61E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 7.8% switchgrass (hammermill) by wt	$SO_2$	2.42E+00	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 7.83% switchgrass	NOx	6.10E-01	Measured data	ESP
3	T000002	Red-2	NA	switchgrass	NA	coal with 7.83% switchgrass	$SO_2$	3.37E+00	Measured data	ESP
3	T000002	Yellow-1	NA	switchgrass	NA	coal with 8.60% switchgrass	NOx	4.90E-01	Measured data	ESP
3	T000002	Yellow-1	NA	switchgrass	NA	coal with 8.60% switchgrass	SO ₂	3.17E+00	Measured data	ESP
3	T000002	Yellow-2	NA	switchgrass	NA	coal with 8.64% switchgrass	NOx	6.30E-01	Measured data	ESP
3	T000002	Yellow-2	NA	switchgrass	NA	coal with 8.64% switchgrass	$SO_2$	3.15E+00	Measured data	ESP

Appendix D. Summary of Emission Factors for Individual Tests
--------------------------------------------------------------

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
1	T000004	NA	NA	switchgrass	NA	coal with 9.2% switchgrass (hammermill) by wt	NOx as NO	4.09E-01	Measured data	ESP
1	T000004	NA	NA	switchgrass	NA	coal with 9.2% switchgrass (hammermill) by wt	SO ₂	2.33E+00	Measured data	ESP
4	J011	NA	2	switchgrass	co-milling of switchgrass, 15% overfire air	PRB coal with 10% switchgrass by mass	NOx	4.40E-01	Measured data from graph	None specified
4	J011	NA	1	switchgrass	co-milling of switchgrass, no overfire air	PRB coal with 10% switchgrass by mass	NOx	6.40E-01	Measured data from graph	None specified
4	J011	NA	3	switchgrass	direct injection of switchgrass, no overfire air	PRB coal with 10% switchgrass by mass	NOx	6.30E-01	Measured data from graph	None specified
18	J009	NA	NA	switchgrass	NA	switchgrass-fired alone	СО	5.98E-01	Modeled	None
18	J009	NA	NA	switchgrass	NA	switchgrass-fired alone	NOx	4.89E-01	Modeled	None
18	J009	NA	NA	switchgrass	NA	switchgrass-fired alone	SOx	2.50E-02	Modeled	None
13	J012	NA	04/27/06	switchgrass	pellets	switchgrass-fired alone	СО	0.77	Measured data	None
13	J012	NA	04/27/06	switchgrass	pellets	switchgrass-fired alone	NOx	0.34	Measured data	None
13	J012	NA	04/27/06	switchgrass	pellets	switchgrass-fired alone	SO ₂	0.24	Measured data	None
13	J012	NA	04/27/06	switchgrass	pellets	coal with 34% switchgrass	СО	1.23	Measured data	None
13	J012	NA	04/27/06	switchgrass	pellets	coal with 34% switchgrass	NOx	0.52	Measured data	None
13	J012	NA	04/27/06	switchgrass	pellets	coal with 34% switchgrass	SO ₂	0.53	Measured data	None
8	J003	NA	NA	wheat straw	NA	coal with 10% wheat straw	НСІ	1.30E-01	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia

Report Reference	Facility ID	Unit ID	Test ID	Biofuel Category	Biofuel Subcategory	Fuel Mix Description	Pollutant	Mean EF (lb/MMBtu)	Data Type	Control Information
8	J003	NA	NA	wheat straw	NA	coal with 10% wheat straw	NOx	3.05E-01	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia
8	J003	NA	NA	wheat straw	NA	coal with 10% wheat straw	SO ₂	9.70E-02	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia
8	J003	NA	NA	wood residue	NA	coal with 10% residual wood	HCI	3.22E-03	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia
8	J003	NA	NA	wood residue	NA	coal with 10% residual wood	NOx	1.94E-01	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia
8	J003	NA	NA	wood residue	NA	coal with 10% residual wood	SO ₂	2.40E-02	Measured data	SO ₂ and NOx flue gas treatment (FGD and ammonia
Minnesota Database	03700280-004	NA	NA	wood residue	NA	none provided	РМ	3.10E-01	Not specified	Not specified
	06100001-008	NA	NA	wood residue	NA	none provided	РМ	7.00E-02	Not specified	Not specified
	06100001-008	NA	NA	wood residue	NA	none provided	РМ	6.60E-02	Not specified	Not specified